wine/dlls/ntdll/unix/system.c

4477 lines
154 KiB
C

/*
* System information APIs
*
* Copyright 1996-1998 Marcus Meissner
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#if 0
#pragma makedep unix
#endif
#include "config.h"
#include <fcntl.h>
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <errno.h>
#include <sys/time.h>
#include <time.h>
#include <dirent.h>
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#ifdef HAVE_SYS_SYSCTL_H
# include <sys/sysctl.h>
#endif
#ifdef HAVE_SYS_UTSNAME_H
# include <sys/utsname.h>
#endif
#ifdef HAVE_MACHINE_CPU_H
# include <machine/cpu.h>
#endif
#ifdef HAVE_SYS_RANDOM_H
# include <sys/random.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
# include <sys/resource.h>
#endif
#ifdef HAVE_SYS_AUXV_H
# include <sys/auxv.h>
#endif
#ifdef __APPLE__
# include <CoreFoundation/CoreFoundation.h>
# include <IOKit/IOKitLib.h>
# include <IOKit/ps/IOPSKeys.h>
# include <IOKit/ps/IOPowerSources.h>
# include <mach/mach.h>
# include <mach/machine.h>
# include <mach/mach_init.h>
# include <mach/mach_host.h>
# include <mach/vm_map.h>
#endif
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "windef.h"
#include "winternl.h"
#include "ddk/wdm.h"
#include "wine/asm.h"
#include "unix_private.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(ntdll);
#pragma pack(push,1)
struct smbios_prologue
{
BYTE calling_method;
BYTE major_version;
BYTE minor_version;
BYTE revision;
DWORD length;
};
struct smbios_header
{
BYTE type;
BYTE length;
WORD handle;
};
struct smbios_bios
{
struct smbios_header hdr;
BYTE vendor;
BYTE version;
WORD start;
BYTE date;
BYTE size;
UINT64 characteristics;
BYTE characteristics_ext[2];
BYTE system_bios_major_release;
BYTE system_bios_minor_release;
BYTE ec_firmware_major_release;
BYTE ec_firmware_minor_release;
};
struct smbios_system
{
struct smbios_header hdr;
BYTE vendor;
BYTE product;
BYTE version;
BYTE serial;
BYTE uuid[16];
BYTE wake_up_type;
BYTE sku_number;
BYTE family;
};
struct smbios_board
{
struct smbios_header hdr;
BYTE vendor;
BYTE product;
BYTE version;
BYTE serial;
BYTE asset_tag;
BYTE feature_flags;
BYTE location;
WORD chassis_handle;
BYTE board_type;
BYTE num_contained_handles;
};
struct smbios_chassis
{
struct smbios_header hdr;
BYTE vendor;
BYTE type;
BYTE version;
BYTE serial;
BYTE asset_tag;
BYTE boot_state;
BYTE power_supply_state;
BYTE thermal_state;
BYTE security_status;
DWORD oem_defined;
BYTE height;
BYTE num_power_cords;
BYTE num_contained_elements;
BYTE contained_element_rec_length;
};
struct smbios_processor
{
struct smbios_header hdr;
BYTE socket;
BYTE type;
BYTE family;
BYTE vendor;
ULONGLONG id;
BYTE version;
BYTE voltage;
WORD clock;
WORD max_speed;
WORD cur_speed;
BYTE status;
BYTE upgrade;
WORD l1cache;
WORD l2cache;
WORD l3cache;
BYTE serial;
BYTE asset_tag;
BYTE part_number;
BYTE core_count;
BYTE core_enabled;
BYTE thread_count;
WORD characteristics;
WORD family2;
WORD core_count2;
WORD core_enabled2;
WORD thread_count2;
};
struct smbios_boot_info
{
struct smbios_header hdr;
BYTE reserved[6];
BYTE boot_status[10];
};
struct smbios_processor_specific_block
{
BYTE length;
BYTE processor_type;
BYTE data[];
};
struct smbios_processor_additional_info
{
struct smbios_header hdr;
WORD ref_handle;
struct smbios_processor_specific_block info_block;
};
struct smbios_wine_core_id_regs_arm64
{
WORD num_regs;
struct smbios_wine_id_reg_value_arm64
{
WORD reg;
UINT64 value;
} regs[];
};
#pragma pack(pop)
enum smbios_type
{
SMBIOS_TYPE_BIOS = 0,
SMBIOS_TYPE_SYSTEM = 1,
SMBIOS_TYPE_BASEBOARD = 2,
SMBIOS_TYPE_CHASSIS = 3,
SMBIOS_TYPE_PROCESSOR = 4,
SMBIOS_TYPE_BOOTINFO = 32,
SMBIOS_TYPE_PROCESSOR_ADDITIONAL_INFO = 44,
SMBIOS_TYPE_END = 127
};
#define SMBIOS_MAJOR_VERSION 3
#define SMBIOS_MINOR_VERSION 0
/* Firmware table providers */
#define ACPI 0x41435049
#define FIRM 0x4649524D
#define RSMB 0x52534D42
static char cpu_name[49];
static char cpu_vendor[13];
static USHORT cpu_level, cpu_revision;
static ULONGLONG cpu_id;
static ULONG *performance_cores;
static unsigned int performance_cores_capacity = 0;
static SYSTEM_LOGICAL_PROCESSOR_INFORMATION *logical_proc_info;
static unsigned int logical_proc_info_len, logical_proc_info_alloc_len;
static SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *logical_proc_info_ex;
static unsigned int logical_proc_info_ex_size, logical_proc_info_ex_alloc_size;
static ULONG_PTR system_cpu_mask;
static pthread_mutex_t timezone_mutex = PTHREAD_MUTEX_INITIALIZER;
/*******************************************************************************
* Architecture specific feature detection for CPUs
*
* This a set of mutually exclusive #if define()s each providing its
* own functions to be called from init_cpu_info().
*/
#if defined(__i386__) || defined(__x86_64__)
static int next_xstate_offset( int off, UINT64 compaction_mask, int feature_idx )
{
const UINT64 feature_mask = (UINT64)1 << feature_idx;
if (!compaction_mask)
return user_shared_data->XState.Features[feature_idx + 1].Offset - sizeof(XSAVE_FORMAT);
if (compaction_mask & feature_mask) off += user_shared_data->XState.Features[feature_idx].Size;
if (user_shared_data->XState.AlignedFeatures & (feature_mask << 1)) off = (off + 63) & ~63;
return off;
}
unsigned int xstate_get_size( UINT64 compaction_mask, UINT64 mask )
{
unsigned int i;
int off;
mask >>= 2;
off = sizeof(XSAVE_AREA_HEADER);
i = 2;
while (mask)
{
if (mask == 1) return off + user_shared_data->XState.Features[i].Size;
off = next_xstate_offset( off, compaction_mask, i );
mask >>= 1;
++i;
}
return off;
}
void copy_xstate( XSAVE_AREA_HEADER *dst, XSAVE_AREA_HEADER *src, UINT64 mask )
{
unsigned int i;
int src_off, dst_off;
UINT64 extended_features = user_shared_data->XState.EnabledFeatures & ~(UINT64)3;
mask &= extended_features & src->Mask;
if (src->CompactionMask) mask &= src->CompactionMask;
if (dst->CompactionMask) mask &= dst->CompactionMask;
dst->Mask = (dst->Mask & ~extended_features) | mask;
mask >>= 2;
src_off = dst_off = sizeof(XSAVE_AREA_HEADER);
i = 2;
while (1)
{
if (mask & 1) memcpy( (char *)dst + dst_off, (char *)src + src_off,
user_shared_data->XState.Features[i].Size );
if (!(mask >>= 1)) break;
src_off = next_xstate_offset( src_off, src->CompactionMask, i );
dst_off = next_xstate_offset( dst_off, dst->CompactionMask, i );
++i;
}
}
static inline void do_cpuid( unsigned int ax, unsigned int cx, unsigned int *p )
{
__asm__ ( "cpuid" : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3]) : "a" (ax), "c" (cx) );
}
static inline UINT64 do_xgetbv( unsigned int cx )
{
UINT low, high;
__asm__( "xgetbv" : "=a" (low), "=d" (high) : "c" (cx) );
return low | ((UINT64)high << 32);
}
/* Detect if a SSE2 processor is capable of Denormals Are Zero (DAZ) mode.
*
* This function assumes you have already checked for SSE2/FXSAVE support. */
static inline BOOL have_sse_daz_mode(void)
{
#ifdef __i386__
/* Intel says we need a zeroed 16-byte aligned buffer */
char buffer[512 + 16];
XSAVE_FORMAT *state = (XSAVE_FORMAT *)(((ULONG_PTR)buffer + 15) & ~15);
memset(buffer, 0, sizeof(buffer));
__asm__ __volatile__( "fxsave %0" : "=m" (*state) : "m" (*state) );
return (state->MxCsr_Mask & (1 << 6)) >> 6;
#else /* all x86_64 processors include SSE2 with DAZ mode */
return TRUE;
#endif
}
static void init_cpu_model(void)
{
unsigned int regs[4];
do_cpuid( 0x00000000, 0, regs ); /* get standard cpuid level and vendor name */
memcpy( cpu_vendor, &regs[1], sizeof(unsigned int) );
memcpy( cpu_vendor + 4, &regs[3], sizeof(unsigned int) );
memcpy( cpu_vendor + 8, &regs[2], sizeof(unsigned int) );
do_cpuid( 0x00000001, 0, regs ); /* get cpu features */
cpu_id = regs[0] | ((ULONGLONG)regs[3] << 32);
cpu_level = ((regs[0] >> 8) & 0xf) + ((regs[0] >> 20) & 0xff); /* family */
cpu_revision = ((regs[0] >> 16) & 0xf) << 12; /* extended model */
cpu_revision |= ((regs[0] >> 4 ) & 0xf) << 8; /* model */
cpu_revision |= regs[0] & 0xf; /* stepping */
do_cpuid( 0x80000000, 0, regs ); /* get vendor cpuid level */
if (regs[0] >= 0x80000004)
{
char *p = cpu_name;
do_cpuid( 0x80000002, 0, (unsigned int *)p );
p += sizeof(regs);
do_cpuid( 0x80000003, 0, (unsigned int *)p );
p += sizeof(regs);
do_cpuid( 0x80000004, 0, (unsigned int *)p );
p += sizeof(regs);
*p = 0;
}
}
static ULONGLONG get_cpu_features(void)
{
const BOOLEAN *pf = user_shared_data->ProcessorFeatures;
ULONGLONG features;
/* feature bits are derived from KF_* flags and Geoff Chappell's documentation */
if (native_machine == IMAGE_FILE_MACHINE_AMD64)
{
features = 0x20013dfe; /* tsc | vme | cmov | pge | pse | mtrr | cx8 | mmx | pat | fxsr | sep | sse | sse2 | nx */
if (pf[PF_RDRAND_INSTRUCTION_AVAILABLE]) features |= 0x100000000; /* rdrand */
if (pf[PF_XSAVE_ENABLED]) features |= 0x00800000; /* xstate */
if (pf[PF_COMPARE_EXCHANGE128]) features |= 0x00100000; /* cx16 */
if (pf[PF_SSE3_INSTRUCTIONS_AVAILABLE]) features |= 0x00080000; /* sse3 */
if (pf[PF_RDTSCP_INSTRUCTION_AVAILABLE]) features |= 0x400000000; /* rdtscp */
if (pf[PF_RDWRFSGSBASE_AVAILABLE]) features |= 0x10000000; /* fsgsbase */
if (!strcmp( cpu_vendor, "AuthenticAMD" )) features |= 0x00200000; /* amd */
else if (!strcmp( cpu_vendor, "GenuineIntel" )) features |= 0x01000000; /* intel */
}
else
{
features = 0x00000275; /* vme | pge | pse | mtrr */
if (pf[PF_RDTSC_INSTRUCTION_AVAILABLE]) features |= 0x00000002; /* tsc */
if (pf[PF_COMPARE_EXCHANGE_DOUBLE]) features |= 0x00000080; /* cx8 */
if (pf[PF_MMX_INSTRUCTIONS_AVAILABLE]) features |= 0x00000100; /* mmx */
if (pf[PF_XMMI_INSTRUCTIONS_AVAILABLE]) features |= 0x00042800; /* sse | fxsr | clfsh */
if (pf[PF_XMMI64_INSTRUCTIONS_AVAILABLE]) features |= 0x00010000; /* sse2 */
if (pf[PF_SSE3_INSTRUCTIONS_AVAILABLE]) features |= 0x00080000; /* sse3 */
if (pf[PF_RDRAND_INSTRUCTION_AVAILABLE]) features |= 0x02000000; /* rdrand */
if (pf[PF_NX_ENABLED]) features |= 0x20000000; /* nx */
if (pf[PF_RDTSCP_INSTRUCTION_AVAILABLE]) features |= 0x100000000; /* rdtscp */
if (pf[PF_3DNOW_INSTRUCTIONS_AVAILABLE]) features |= 0x00004000; /* 3dnow */
if (pf[PF_VIRT_FIRMWARE_ENABLED]) features |= 0x0c000000; /* vmx */
if (!strcmp( cpu_vendor, "GenuineIntel" )) features |= 0x008000000; /* intel */
else if (!strcmp( cpu_vendor, "AuthenticAMD" )) features |= 0x001000000; /* amd */
}
return features;
}
static void init_xstate_features( XSTATE_CONFIGURATION *xstate )
{
static const ULONG64 supported_features = (1 << XSTATE_AVX) | (1 << XSTATE_MPX_BNDREGS) |
(1 << XSTATE_MPX_BNDCSR) | (1 << XSTATE_AVX512_KMASK) |
(1 << XSTATE_AVX512_ZMM_H) | (1 << XSTATE_AVX512_ZMM);
ULONG64 supported_mask;
unsigned int i, off, regs[4];
do_cpuid( 0x0000000d, 0, regs );
TRACE( "XSAVE details %#x, %#x, %#x, %#x.\n", regs[0], regs[1], regs[2], regs[3] );
supported_mask = ((ULONG64)regs[3] << 32) | regs[0];
supported_mask &= do_xgetbv(0) & supported_features;
xstate->EnabledFeatures = (1 << XSTATE_LEGACY_FLOATING_POINT) | (1 << XSTATE_LEGACY_SSE) | supported_mask;
xstate->EnabledVolatileFeatures = xstate->EnabledFeatures;
xstate->AllFeatureSize = regs[1];
do_cpuid( 0x0000000d, 1, regs );
xstate->OptimizedSave = !!(regs[0] & (1 << 0));
xstate->CompactionEnabled = !!(regs[0] & (1 << 1));
xstate->ExtendedFeatureDisable = !!(regs[0] & (1 << 4));
xstate->Features[0].Size = xstate->AllFeatures[0] = offsetof( XSAVE_FORMAT, XmmRegisters );
xstate->Features[1].Size = xstate->AllFeatures[1] = sizeof(M128A) * 16;
xstate->Features[1].Offset = xstate->Features[0].Size;
off = sizeof(XSAVE_FORMAT) + sizeof(XSAVE_AREA_HEADER);
supported_mask >>= 2;
for (i = 2; supported_mask; ++i, supported_mask >>= 1)
{
if (!(supported_mask & 1)) continue;
do_cpuid( 0x0000000d, i, regs );
xstate->Features[i].Offset = regs[1];
xstate->Features[i].Size = xstate->AllFeatures[i] = regs[0];
if (regs[2] & 2)
{
xstate->AlignedFeatures |= (ULONG64)1 << i;
off = (off + 63) & ~63;
}
off += xstate->Features[i].Size;
TRACE( "xstate[%d] offset %x, size %x, aligned %d.\n", i,
xstate->Features[i].Offset, xstate->Features[i].Size, !!(regs[2] & 2) );
}
xstate->Size = xstate->CompactionEnabled ? off :
offsetof( XSAVE_FORMAT, XmmRegisters ) + xstate->Features[i - 1].Offset + xstate->Features[i - 1].Size;
TRACE( "xstate size %x, compacted %d, optimized %d.\n",
xstate->Size, xstate->CompactionEnabled, xstate->OptimizedSave );
}
void init_shared_data_cpuinfo( KUSER_SHARED_DATA *data )
{
BOOLEAN *features = data->ProcessorFeatures;
unsigned int regs[4];
features[PF_FASTFAIL_AVAILABLE] = TRUE;
features[PF_COMPARE_EXCHANGE_DOUBLE] = TRUE;
do_cpuid( 0x00000001, 0, regs ); /* get cpu features */
features[PF_RDTSC_INSTRUCTION_AVAILABLE] = !!(regs[3] & (1 << 4));
features[PF_PAE_ENABLED] = !!(regs[3] & (1 << 6));
features[PF_MMX_INSTRUCTIONS_AVAILABLE] = !!(regs[3] & (1 << 23));
features[PF_XMMI_INSTRUCTIONS_AVAILABLE] = (regs[3] & (1 << 24)) && (regs[3] & (1 << 25));
features[PF_XMMI64_INSTRUCTIONS_AVAILABLE] = !!(regs[3] & (1 << 26));
features[PF_SSE3_INSTRUCTIONS_AVAILABLE] = !!(regs[2] & (1 << 0));
features[PF_VIRT_FIRMWARE_ENABLED] = !!(regs[2] & (1 << 5));
features[PF_SSSE3_INSTRUCTIONS_AVAILABLE] = !!(regs[2] & (1 << 9));
features[PF_COMPARE_EXCHANGE128] = !!(regs[2] & (1 << 13));
features[PF_SSE4_1_INSTRUCTIONS_AVAILABLE] = !!(regs[2] & (1 << 19));
features[PF_SSE4_2_INSTRUCTIONS_AVAILABLE] = !!(regs[2] & (1 << 20));
features[PF_XSAVE_ENABLED] = !!(regs[2] & (1 << 27));
features[PF_AVX_INSTRUCTIONS_AVAILABLE] = !!(regs[2] & (1 << 28));
features[PF_RDRAND_INSTRUCTION_AVAILABLE] = !!(regs[2] & (1 << 30));
features[PF_SSE_DAZ_MODE_AVAILABLE] = (features[PF_XMMI64_INSTRUCTIONS_AVAILABLE] && have_sse_daz_mode());
do_cpuid( 0x00000000, 0, regs );
if (regs[0] >= 0x00000007)
{
do_cpuid( 0x00000007, 0, regs ); /* get extended features */
features[PF_RDWRFSGSBASE_AVAILABLE] = !!(regs[1] & (1 << 0));
features[PF_AVX2_INSTRUCTIONS_AVAILABLE] = !!(regs[1] & (1 << 5));
features[PF_BMI2_INSTRUCTIONS_AVAILABLE] = !!(regs[1] & (1 << 8));
features[PF_ERMS_AVAILABLE] = !!(regs[1] & (1 << 9));
features[PF_AVX512F_INSTRUCTIONS_AVAILABLE] = !!(regs[1] & (1 << 16));
features[PF_RDPID_INSTRUCTION_AVAILABLE] = !!(regs[2] & (1 << 22));
#if defined(__linux__) && defined(AT_HWCAP2)
features[PF_RDWRFSGSBASE_AVAILABLE] &= !!(getauxval( AT_HWCAP2 ) & 2);
#endif
}
do_cpuid( 0x80000000, 0, regs ); /* get vendor cpuid level */
if (regs[0] >= 0x80000001)
{
do_cpuid( 0x80000001, 0, regs ); /* get vendor features */
features[PF_MONITORX_INSTRUCTION_AVAILABLE] = !!(regs[2] & (1 << 29));
features[PF_NX_ENABLED] = !!(regs[3] & (1 << 20));
features[PF_RDTSCP_INSTRUCTION_AVAILABLE] = !!(regs[3] & (1 << 27));
features[PF_VIRT_FIRMWARE_ENABLED] |= !!(regs[2] & (1 << 2));
features[PF_3DNOW_INSTRUCTIONS_AVAILABLE] = !!(regs[3] & (1u << 31));
}
if (features[PF_XSAVE_ENABLED])
init_xstate_features( &data->XState );
}
#elif defined(__arm__) || defined(__aarch64__)
static int has_feature( const char *line, const char *feat )
{
size_t len = strlen(feat);
while (*line)
{
while (*line == ' ' || *line == '\t') line++;
if (!strncmp( line, feat, len ) && (!line[len] || isspace(line[len]))) return 1;
while (*line && *line != ' ' && *line != '\t') line++;
}
return 0;
}
static void init_cpu_model(void)
{
unsigned int implementer = 0x41, part = 0, variant = 0, revision = 0;
#ifdef linux
char line[512];
char *s, *value;
FILE *f = fopen("/proc/cpuinfo", "r");
if (f)
{
while (fgets( line, sizeof(line), f ))
{
/* NOTE: the ':' is the only character we can rely on */
if (!(value = strchr(line,':'))) continue;
/* terminate the valuename */
s = value - 1;
while ((s >= line) && (*s == ' ' || *s == '\t')) s--;
s[1] = 0;
/* and strip leading spaces from value */
value += 1;
while (*value == ' ' || *value == '\t') value++;
if ((s = strchr( value,'\n' ))) *s = 0;
if (!strcmp( line, "CPU implementer" )) implementer = strtoul( value, NULL, 0);
else if (!strcmp( line, "CPU part" )) part = strtoul( value, NULL, 0);
else if (!strcmp( line, "CPU variant" )) variant = strtoul( value, NULL, 0);
else if (!strcmp( line, "CPU revision" )) revision = strtoul( value, NULL, 0);
}
fclose( f );
}
#endif
cpu_level = part;
cpu_revision = (variant << 8) | revision;
cpu_id = (implementer << 24) | (variant << 20) | (0x0f << 16) | (part << 4) | revision;
switch (implementer)
{
case 0x41: strcpy( cpu_vendor, "ARM" ); break;
case 0x42: strcpy( cpu_vendor, "Broadcom" ); break;
case 0x43: strcpy( cpu_vendor, "Cavium" ); break;
case 0x44: strcpy( cpu_vendor, "DEC" ); break;
case 0x4e: strcpy( cpu_vendor, "Nvidia" ); break;
case 0x50: strcpy( cpu_vendor, "APM" ); break;
case 0x51: strcpy( cpu_vendor, "Qualcomm" ); break;
case 0x53: strcpy( cpu_vendor, "Samsung" ); break;
case 0x56: strcpy( cpu_vendor, "Marvell" ); break;
case 0x66: strcpy( cpu_vendor, "Faraday" ); break;
case 0x69: strcpy( cpu_vendor, "Intel" ); break;
}
}
static ULONGLONG get_cpu_features(void)
{
return 0; /* FIXME */
}
void init_shared_data_cpuinfo( KUSER_SHARED_DATA *data )
{
BOOLEAN *features = data->ProcessorFeatures;
#ifdef linux
FILE *f = fopen("/proc/cpuinfo", "r");
if (f)
{
char *s, *value, line[512];
while (fgets( line, sizeof(line), f ))
{
/* NOTE: the ':' is the only character we can rely on */
if (!(value = strchr(line,':'))) continue;
/* terminate the valuename */
s = value - 1;
while ((s >= line) && (*s == ' ' || *s == '\t')) s--;
s[1] = 0;
value++;
if ((s = strchr( value, '\n' ))) *s = 0;
if (strcmp( line, "Features" )) continue;
features[PF_ARM_VFP_32_REGISTERS_AVAILABLE] = has_feature( value, "vfpv3" );
features[PF_ARM_NEON_INSTRUCTIONS_AVAILABLE] = has_feature( value, "neon" );
features[PF_ARM_DIVIDE_INSTRUCTION_AVAILABLE] = has_feature( value, "idivt" );
if (native_machine == IMAGE_FILE_MACHINE_ARMNT) break;
features[PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE] = has_feature( value, "crc32" );
features[PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE] = has_feature( value, "aes" );
features[PF_ARM_V81_ATOMIC_INSTRUCTIONS_AVAILABLE] = has_feature( value, "atomics" );
features[PF_ARM_V82_DP_INSTRUCTIONS_AVAILABLE] = has_feature( value, "asimddp" );
features[PF_ARM_V83_JSCVT_INSTRUCTIONS_AVAILABLE] = has_feature( value, "jscvt" );
features[PF_ARM_V83_LRCPC_INSTRUCTIONS_AVAILABLE] = has_feature( value, "lrcpc" );
features[PF_ARM_SVE_INSTRUCTIONS_AVAILABLE] = has_feature( value, "sve" );
features[PF_ARM_SVE2_INSTRUCTIONS_AVAILABLE] = has_feature( value, "sve2" );
features[PF_ARM_SVE2_1_INSTRUCTIONS_AVAILABLE] = has_feature( value, "sve2p1" );
features[PF_ARM_SVE_AES_INSTRUCTIONS_AVAILABLE] = has_feature( value, "sveaes" );
features[PF_ARM_SVE_PMULL128_INSTRUCTIONS_AVAILABLE] = has_feature( value, "svepmull" );
features[PF_ARM_SVE_BITPERM_INSTRUCTIONS_AVAILABLE] = has_feature( value, "svebitperm" );
features[PF_ARM_SVE_BF16_INSTRUCTIONS_AVAILABLE] = has_feature( value, "svebf16" );
features[PF_ARM_SVE_EBF16_INSTRUCTIONS_AVAILABLE] = has_feature( value, "sveebf16" );
features[PF_ARM_SVE_B16B16_INSTRUCTIONS_AVAILABLE] = has_feature( value, "sveb16b16" );
features[PF_ARM_SVE_SHA3_INSTRUCTIONS_AVAILABLE] = has_feature( value, "svesha3" );
features[PF_ARM_SVE_SM4_INSTRUCTIONS_AVAILABLE] = has_feature( value, "svesm4" );
features[PF_ARM_SVE_I8MM_INSTRUCTIONS_AVAILABLE] = has_feature( value, "svei8mm" );
features[PF_ARM_SVE_F32MM_INSTRUCTIONS_AVAILABLE] = has_feature( value, "svef32mm" );
features[PF_ARM_SVE_F64MM_INSTRUCTIONS_AVAILABLE] = has_feature( value, "svef64mm" );
break;
}
fclose( f );
}
#endif
features[PF_FASTFAIL_AVAILABLE] = TRUE;
features[PF_COMPARE_EXCHANGE_DOUBLE] = TRUE;
if (native_machine == IMAGE_FILE_MACHINE_ARMNT) return;
features[PF_ARM_V8_INSTRUCTIONS_AVAILABLE] = TRUE;
features[PF_NX_ENABLED] = TRUE;
/* add features for other architectures supported by wow64 */
for (unsigned int i = 0; i < supported_machines_count; i++)
{
switch (supported_machines[i])
{
case IMAGE_FILE_MACHINE_ARMNT:
features[PF_ARM_VFP_32_REGISTERS_AVAILABLE] = TRUE;
features[PF_ARM_NEON_INSTRUCTIONS_AVAILABLE] = TRUE;
features[PF_ARM_DIVIDE_INSTRUCTION_AVAILABLE] = TRUE;
break;
case IMAGE_FILE_MACHINE_I386:
features[PF_MMX_INSTRUCTIONS_AVAILABLE] = TRUE;
features[PF_XMMI_INSTRUCTIONS_AVAILABLE] = TRUE;
features[PF_RDTSC_INSTRUCTION_AVAILABLE] = TRUE;
features[PF_XMMI64_INSTRUCTIONS_AVAILABLE] = TRUE;
features[PF_SSE3_INSTRUCTIONS_AVAILABLE] = TRUE;
features[PF_COMPARE_EXCHANGE128] = TRUE;
features[PF_RDTSCP_INSTRUCTION_AVAILABLE] = TRUE;
features[PF_SSSE3_INSTRUCTIONS_AVAILABLE] = TRUE;
features[PF_SSE4_1_INSTRUCTIONS_AVAILABLE] = TRUE;
features[PF_SSE4_2_INSTRUCTIONS_AVAILABLE] = TRUE;
break;
}
}
}
#endif /* End architecture specific feature detection for CPUs */
static BOOL grow_logical_proc_buf(void)
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION *new_data;
unsigned int new_len;
if (logical_proc_info_len < logical_proc_info_alloc_len) return TRUE;
new_len = max( logical_proc_info_alloc_len * 2, logical_proc_info_len + 1 );
if (!(new_data = realloc( logical_proc_info, new_len * sizeof(*new_data) ))) return FALSE;
memset( new_data + logical_proc_info_alloc_len, 0,
(new_len - logical_proc_info_alloc_len) * sizeof(*new_data) );
logical_proc_info = new_data;
logical_proc_info_alloc_len = new_len;
return TRUE;
}
static BOOL grow_logical_proc_ex_buf( unsigned int add_size )
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *new_dataex;
DWORD new_len;
if ( logical_proc_info_ex_size + add_size <= logical_proc_info_ex_alloc_size ) return TRUE;
new_len = max( logical_proc_info_ex_alloc_size * 2, logical_proc_info_ex_alloc_size + add_size );
if (!(new_dataex = realloc( logical_proc_info_ex, new_len ))) return FALSE;
memset( (char *)new_dataex + logical_proc_info_ex_alloc_size, 0, new_len - logical_proc_info_ex_alloc_size );
logical_proc_info_ex = new_dataex;
logical_proc_info_ex_alloc_size = new_len;
return TRUE;
}
static DWORD log_proc_ex_size_plus( DWORD size )
{
/* add SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX.Relationship and .Size */
return sizeof(LOGICAL_PROCESSOR_RELATIONSHIP) + sizeof(DWORD) + size;
}
static DWORD count_bits( ULONG_PTR mask )
{
DWORD count = 0;
while (mask > 0)
{
if (mask & 1) ++count;
mask >>= 1;
}
return count;
}
static BOOL logical_proc_info_ex_add_by_id( LOGICAL_PROCESSOR_RELATIONSHIP rel, DWORD id, ULONG_PTR mask )
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *dataex;
unsigned int ofs = 0;
while (ofs < logical_proc_info_ex_size)
{
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((char *)logical_proc_info_ex + ofs);
if (rel == RelationProcessorPackage && dataex->Relationship == rel && dataex->Processor.Reserved[1] == id)
{
dataex->Processor.GroupMask[0].Mask |= mask;
return TRUE;
}
else if (rel == RelationProcessorCore && dataex->Relationship == rel && dataex->Processor.Reserved[1] == id)
{
return TRUE;
}
ofs += dataex->Size;
}
/* TODO: For now, just one group. If more than 64 processors, then we
* need another group. */
if (!grow_logical_proc_ex_buf( log_proc_ex_size_plus( sizeof(PROCESSOR_RELATIONSHIP) ))) return FALSE;
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((char *)logical_proc_info_ex + ofs);
dataex->Relationship = rel;
dataex->Size = log_proc_ex_size_plus( sizeof(PROCESSOR_RELATIONSHIP) );
if (rel == RelationProcessorCore)
dataex->Processor.Flags = count_bits( mask ) > 1 ? LTP_PC_SMT : 0;
else
dataex->Processor.Flags = 0;
if (rel == RelationProcessorCore && id / 32 < performance_cores_capacity)
dataex->Processor.EfficiencyClass = (performance_cores[id / 32] >> (id % 32)) & 1;
else
dataex->Processor.EfficiencyClass = 0;
dataex->Processor.GroupCount = 1;
dataex->Processor.GroupMask[0].Mask = mask;
dataex->Processor.GroupMask[0].Group = 0;
/* mark for future lookup */
dataex->Processor.Reserved[0] = 0;
dataex->Processor.Reserved[1] = id;
logical_proc_info_ex_size += dataex->Size;
return TRUE;
}
/* Store package and core information for a logical processor. Parsing of processor
* data may happen in multiple passes; the 'id' parameter is then used to locate
* previously stored data. The type of data stored in 'id' depends on 'rel':
* - RelationProcessorPackage: package id ('CPU socket').
* - RelationProcessorCore: physical core number.
*/
static BOOL logical_proc_info_add_by_id( LOGICAL_PROCESSOR_RELATIONSHIP rel, DWORD id, ULONG_PTR mask )
{
unsigned int i;
for (i = 0; i < logical_proc_info_len; i++)
{
if (rel == RelationProcessorPackage && logical_proc_info[i].Relationship == rel
&& logical_proc_info[i].Reserved[1] == id)
{
logical_proc_info[i].ProcessorMask |= mask;
return logical_proc_info_ex_add_by_id( rel, id, mask );
}
else if (rel == RelationProcessorCore && logical_proc_info[i].Relationship == rel
&& logical_proc_info[i].Reserved[1] == id)
return logical_proc_info_ex_add_by_id( rel, id, mask );
}
if (!grow_logical_proc_buf()) return FALSE;
logical_proc_info[i].Relationship = rel;
logical_proc_info[i].ProcessorMask = mask;
if (rel == RelationProcessorCore)
logical_proc_info[i].ProcessorCore.Flags = count_bits( mask ) > 1 ? LTP_PC_SMT : 0;
logical_proc_info[i].Reserved[0] = 0;
logical_proc_info[i].Reserved[1] = id;
logical_proc_info_len = i + 1;
return logical_proc_info_ex_add_by_id( rel, id, mask );
}
static BOOL logical_proc_info_add_cache( ULONG_PTR mask, CACHE_DESCRIPTOR *cache )
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *dataex;
unsigned int ofs = 0, i;
for (i = 0; i < logical_proc_info_len; i++)
{
if (logical_proc_info[i].Relationship==RelationCache && logical_proc_info[i].ProcessorMask==mask
&& logical_proc_info[i].Cache.Level==cache->Level && logical_proc_info[i].Cache.Type==cache->Type)
return TRUE;
}
if (!grow_logical_proc_buf()) return FALSE;
logical_proc_info[i].Relationship = RelationCache;
logical_proc_info[i].ProcessorMask = mask;
logical_proc_info[i].Cache = *cache;
logical_proc_info_len = i + 1;
for (ofs = 0; ofs < logical_proc_info_ex_size; )
{
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((char *)logical_proc_info_ex + ofs);
if (dataex->Relationship == RelationCache && dataex->Cache.GroupMask.Mask == mask
&& dataex->Cache.Level == cache->Level && dataex->Cache.Type == cache->Type)
return TRUE;
ofs += dataex->Size;
}
if (!grow_logical_proc_ex_buf( log_proc_ex_size_plus( sizeof(CACHE_RELATIONSHIP) ))) return FALSE;
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((char *)logical_proc_info_ex + ofs);
dataex->Relationship = RelationCache;
dataex->Size = log_proc_ex_size_plus( sizeof(CACHE_RELATIONSHIP) );
dataex->Cache.Level = cache->Level;
dataex->Cache.Associativity = cache->Associativity;
dataex->Cache.LineSize = cache->LineSize;
dataex->Cache.CacheSize = cache->Size;
dataex->Cache.Type = cache->Type;
dataex->Cache.GroupMask.Mask = mask;
dataex->Cache.GroupMask.Group = 0;
logical_proc_info_ex_size += dataex->Size;
return TRUE;
}
static BOOL logical_proc_info_add_numa_node( ULONG_PTR mask, DWORD node_id )
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *dataex;
if (!grow_logical_proc_buf()) return FALSE;
logical_proc_info[logical_proc_info_len].Relationship = RelationNumaNode;
logical_proc_info[logical_proc_info_len].ProcessorMask = mask;
logical_proc_info[logical_proc_info_len].NumaNode.NodeNumber = node_id;
++logical_proc_info_len;
if (!grow_logical_proc_ex_buf( log_proc_ex_size_plus( sizeof(NUMA_NODE_RELATIONSHIP) ))) return FALSE;
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((char *)logical_proc_info_ex + logical_proc_info_ex_size);
dataex->Relationship = RelationNumaNode;
dataex->Size = log_proc_ex_size_plus( sizeof(NUMA_NODE_RELATIONSHIP) );
dataex->NumaNode.NodeNumber = node_id;
dataex->NumaNode.GroupMask.Mask = mask;
dataex->NumaNode.GroupMask.Group = 0;
logical_proc_info_ex_size += dataex->Size;
return TRUE;
}
static BOOL logical_proc_info_add_group( DWORD num_cpus, ULONG_PTR mask )
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *dataex;
if (!grow_logical_proc_ex_buf( log_proc_ex_size_plus( sizeof(GROUP_RELATIONSHIP) ))) return FALSE;
dataex = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)(((char *)logical_proc_info_ex) + logical_proc_info_ex_size);
dataex->Relationship = RelationGroup;
dataex->Size = log_proc_ex_size_plus( sizeof(GROUP_RELATIONSHIP) );
dataex->Group.MaximumGroupCount = 1;
dataex->Group.ActiveGroupCount = 1;
dataex->Group.GroupInfo[0].MaximumProcessorCount = num_cpus;
dataex->Group.GroupInfo[0].ActiveProcessorCount = num_cpus;
dataex->Group.GroupInfo[0].ActiveProcessorMask = mask;
logical_proc_info_ex_size += dataex->Size;
system_cpu_mask |= mask;
return TRUE;
}
#ifdef linux
/* Helper function for counting bitmap values as commonly used by the Linux kernel
* for storing CPU masks in sysfs. The format is comma separated lists of hex values
* each max 32-bit e.g. "00ff" or even "00,00000000,0000ffff".
*
* Example files include:
* - /sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_map
* - /sys/devices/system/cpu/cpu0/topology/thread_siblings
*/
static BOOL sysfs_parse_bitmap(const char *filename, ULONG_PTR *mask)
{
FILE *f;
unsigned int r;
f = fopen(filename, "r");
if (!f) return FALSE;
while (!feof(f))
{
char op;
if (!fscanf(f, "%x%c ", &r, &op)) break;
*mask = (sizeof(ULONG_PTR)>sizeof(int) ? *mask << (8 * sizeof(DWORD)) : 0) + r;
}
fclose( f );
return TRUE;
}
/* Helper function for counting number of elements in interval lists as used by
* the Linux kernel. The format is comma separated list of intervals of which
* each interval has the format of "begin-end" where begin and end are decimal
* numbers. E.g. "0-7", "0-7,16-23"
*
* Example files include:
* - /sys/devices/system/cpu/online
* - /sys/devices/system/cpu/cpu0/cache/index0/shared_cpu_list
* - /sys/devices/system/cpu/cpu0/topology/thread_siblings_list.
*/
static BOOL sysfs_count_list_elements(const char *filename, unsigned int *result)
{
FILE *f;
f = fopen(filename, "r");
if (!f) return FALSE;
while (!feof(f))
{
char op;
unsigned int beg, end;
if (!fscanf(f, "%u%c ", &beg, &op)) break;
if(op == '-')
fscanf(f, "%u%c ", &end, &op);
else
end = beg;
*result += end - beg + 1;
}
fclose( f );
return TRUE;
}
static void fill_performance_core_info(void)
{
FILE *fpcore_list;
unsigned int beg, end, i;
char op = ',';
ULONG *p;
fpcore_list = fopen("/sys/devices/cpu_core/cpus", "r");
if (!fpcore_list) return;
performance_cores = calloc(16, sizeof(ULONG));
if (!performance_cores) goto done;
performance_cores_capacity = 16;
while (!feof(fpcore_list) && op == ',')
{
if (!fscanf(fpcore_list, "%u %c ", &beg, &op)) break;
if (op == '-') fscanf(fpcore_list, "%u %c ", &end, &op);
else end = beg;
for(i = beg; i <= end; i++)
{
if (i / 32 >= performance_cores_capacity)
{
p = realloc(performance_cores, performance_cores_capacity * 2 * sizeof(ULONG));
if (!p) goto done;
memset(p + performance_cores_capacity, 0, performance_cores_capacity * sizeof(ULONG));
performance_cores = p;
performance_cores_capacity *= 2;
}
performance_cores[i / 32] |= 1 << (i % 32);
}
}
done:
fclose(fpcore_list);
}
/* for 'data', max_len is the array count. for 'dataex', max_len is in bytes */
static NTSTATUS create_logical_proc_info(void)
{
static const char core_info[] = "/sys/devices/system/cpu/cpu%u/topology/%s";
static const char cache_info[] = "/sys/devices/system/cpu/cpu%u/cache/index%u/%s";
static const char numa_info[] = "/sys/devices/system/node/node%u/cpumap";
FILE *fcpu_list, *fnuma_list, *f;
unsigned int beg, end, i, j, r, num_cpus = 0, max_cpus = 0;
char op, name[MAX_PATH];
ULONG_PTR all_cpus_mask = 0;
/* On systems with a large number of CPU cores (32 or 64 depending on 32-bit or 64-bit),
* we have issues parsing processor information:
* - ULONG_PTR masks as used in data structures can't hold all cores. Requires splitting
* data appropriately into "processor groups". We are hard coding 1.
* - Thread affinity code in wineserver and our CPU parsing code here work independently.
* So far the Windows mask applied directly to Linux, but process groups break that.
* (NUMA systems you may have multiple non-full groups.)
*/
if(sysfs_count_list_elements("/sys/devices/system/cpu/present", &max_cpus) && max_cpus > MAXIMUM_PROCESSORS)
{
FIXME("Improve CPU info reporting: system supports %u logical cores, but only %u supported!\n",
max_cpus, MAXIMUM_PROCESSORS);
}
fill_performance_core_info();
fcpu_list = fopen("/sys/devices/system/cpu/online", "r");
if (!fcpu_list) return STATUS_NOT_IMPLEMENTED;
while (!feof(fcpu_list))
{
if (!fscanf(fcpu_list, "%u%c ", &beg, &op)) break;
if (op == '-') fscanf(fcpu_list, "%u%c ", &end, &op);
else end = beg;
for(i = beg; i <= end; i++)
{
unsigned int phys_core = 0;
ULONG_PTR thread_mask = 0;
if (i > 8 * sizeof(ULONG_PTR)) break;
snprintf(name, sizeof(name), core_info, i, "physical_package_id");
f = fopen(name, "r");
if (f)
{
fscanf(f, "%u", &r);
fclose(f);
}
else r = 0;
if (!logical_proc_info_add_by_id( RelationProcessorPackage, r, (ULONG_PTR)1 << i ))
{
fclose(fcpu_list);
return STATUS_NO_MEMORY;
}
/* Sysfs enumerates logical cores (and not physical cores), but Windows enumerates
* by physical core. Upon enumerating a logical core in sysfs, we register a physical
* core and all its logical cores. In order to not report physical cores multiple
* times, we pass a unique physical core ID to logical_proc_info_add_by_id and let
* that call figure out any duplication.
* Obtain a unique physical core ID from the first element of thread_siblings_list.
* This list provides logical cores sharing the same physical core. The IDs are based
* on kernel cpu core numbering as opposed to a hardware core ID like provided through
* 'core_id', so are suitable as a unique ID.
*/
/* Mask of logical threads sharing same physical core in kernel core numbering. */
snprintf(name, sizeof(name), core_info, i, "thread_siblings");
if(!sysfs_parse_bitmap(name, &thread_mask)) thread_mask = 1<<i;
/* Needed later for NumaNode and Group. */
all_cpus_mask |= thread_mask;
snprintf(name, sizeof(name), core_info, i, "thread_siblings_list");
f = fopen(name, "r");
if (f)
{
fscanf(f, "%d%c", &phys_core, &op);
fclose(f);
}
else phys_core = i;
if (!logical_proc_info_add_by_id( RelationProcessorCore, phys_core, thread_mask ))
{
fclose(fcpu_list);
return STATUS_NO_MEMORY;
}
for (j = 0; j < 4; j++)
{
CACHE_DESCRIPTOR cache = { .Associativity = 8, .LineSize = 64, .Type = CacheUnified, .Size = 64 * 1024 };
ULONG_PTR mask = 0;
snprintf(name, sizeof(name), cache_info, i, j, "shared_cpu_map");
if(!sysfs_parse_bitmap(name, &mask)) continue;
snprintf(name, sizeof(name), cache_info, i, j, "level");
f = fopen(name, "r");
if(!f) continue;
fscanf(f, "%u", &r);
fclose(f);
cache.Level = r;
snprintf(name, sizeof(name), cache_info, i, j, "ways_of_associativity");
if ((f = fopen(name, "r")))
{
fscanf(f, "%u", &r);
fclose(f);
cache.Associativity = r;
}
snprintf(name, sizeof(name), cache_info, i, j, "coherency_line_size");
if ((f = fopen(name, "r")))
{
fscanf(f, "%u", &r);
fclose(f);
cache.LineSize = r;
}
snprintf(name, sizeof(name), cache_info, i, j, "size");
if ((f = fopen(name, "r")))
{
fscanf(f, "%u%c", &r, &op);
fclose(f);
if(op != 'K')
WARN("unknown cache size %u%c\n", r, op);
cache.Size = (op=='K' ? r*1024 : r);
}
snprintf(name, sizeof(name), cache_info, i, j, "type");
if ((f = fopen(name, "r")))
{
fscanf(f, "%s", name);
fclose(f);
if (!memcmp(name, "Data", 5))
cache.Type = CacheData;
else if(!memcmp(name, "Instruction", 11))
cache.Type = CacheInstruction;
else
cache.Type = CacheUnified;
}
if (!logical_proc_info_add_cache( mask, &cache ))
{
fclose(fcpu_list);
return STATUS_NO_MEMORY;
}
}
}
}
fclose(fcpu_list);
num_cpus = count_bits(all_cpus_mask);
fnuma_list = fopen("/sys/devices/system/node/online", "r");
if (!fnuma_list)
{
if (!logical_proc_info_add_numa_node( all_cpus_mask, 0 ))
return STATUS_NO_MEMORY;
}
else
{
while (!feof(fnuma_list))
{
if (!fscanf(fnuma_list, "%u%c ", &beg, &op))
break;
if (op == '-') fscanf(fnuma_list, "%u%c ", &end, &op);
else end = beg;
for (i = beg; i <= end; i++)
{
ULONG_PTR mask = 0;
snprintf(name, sizeof(name), numa_info, i);
if (!sysfs_parse_bitmap( name, &mask )) continue;
if (!logical_proc_info_add_numa_node( mask, i ))
{
fclose(fnuma_list);
return STATUS_NO_MEMORY;
}
}
}
fclose(fnuma_list);
}
logical_proc_info_add_group( num_cpus, all_cpus_mask );
performance_cores_capacity = 0;
free(performance_cores);
performance_cores = NULL;
return STATUS_SUCCESS;
}
#elif defined(__APPLE__)
/* for 'data', max_len is the array count. for 'dataex', max_len is in bytes */
static NTSTATUS create_logical_proc_info(void)
{
unsigned int pkgs_no, cores_no, lcpu_no, lcpu_per_core, cores_per_package, assoc;
unsigned int cache_ctrs[10] = {0};
ULONG_PTR all_cpus_mask = 0;
CACHE_DESCRIPTOR cache[10];
LONGLONG cache_size, cache_line_size, cache_sharing[10];
size_t size;
unsigned int p, i, j, k;
lcpu_no = peb->NumberOfProcessors;
size = sizeof(pkgs_no);
if (sysctlbyname("hw.packages", &pkgs_no, &size, NULL, 0))
pkgs_no = 1;
size = sizeof(cores_no);
if (sysctlbyname("hw.physicalcpu", &cores_no, &size, NULL, 0))
cores_no = lcpu_no;
TRACE("%u logical CPUs from %u physical cores across %u packages\n",
lcpu_no, cores_no, pkgs_no);
lcpu_per_core = lcpu_no / cores_no;
cores_per_package = cores_no / pkgs_no;
memset(cache, 0, sizeof(cache));
cache[1].Level = 1;
cache[1].Type = CacheInstruction;
cache[1].Associativity = 8; /* reasonable default */
cache[1].LineSize = 0x40; /* reasonable default */
cache[2].Level = 1;
cache[2].Type = CacheData;
cache[2].Associativity = 8;
cache[2].LineSize = 0x40;
cache[3].Level = 2;
cache[3].Type = CacheUnified;
cache[3].Associativity = 8;
cache[3].LineSize = 0x40;
cache[4].Level = 3;
cache[4].Type = CacheUnified;
cache[4].Associativity = 12;
cache[4].LineSize = 0x40;
size = sizeof(cache_line_size);
if (!sysctlbyname("hw.cachelinesize", &cache_line_size, &size, NULL, 0))
{
for (i = 1; i < 5; i++) cache[i].LineSize = cache_line_size;
}
/* TODO: set actual associativity for all caches */
size = sizeof(assoc);
if (!sysctlbyname("machdep.cpu.cache.L2_associativity", &assoc, &size, NULL, 0))
cache[3].Associativity = assoc;
size = sizeof(cache_size);
if (!sysctlbyname("hw.l1icachesize", &cache_size, &size, NULL, 0))
cache[1].Size = cache_size;
size = sizeof(cache_size);
if (!sysctlbyname("hw.l1dcachesize", &cache_size, &size, NULL, 0))
cache[2].Size = cache_size;
size = sizeof(cache_size);
if (!sysctlbyname("hw.l2cachesize", &cache_size, &size, NULL, 0))
cache[3].Size = cache_size;
size = sizeof(cache_size);
if (!sysctlbyname("hw.l3cachesize", &cache_size, &size, NULL, 0))
cache[4].Size = cache_size;
size = sizeof(cache_sharing);
if (sysctlbyname("hw.cacheconfig", cache_sharing, &size, NULL, 0) < 0)
{
cache_sharing[1] = lcpu_per_core;
cache_sharing[2] = lcpu_per_core;
cache_sharing[3] = lcpu_per_core;
cache_sharing[4] = lcpu_no;
}
else
{
/* in cache[], indexes 1 and 2 are l1 caches */
cache_sharing[4] = cache_sharing[3];
cache_sharing[3] = cache_sharing[2];
cache_sharing[2] = cache_sharing[1];
}
for(p = 0; p < pkgs_no; ++p)
{
for(j = 0; j < cores_per_package && p * cores_per_package + j < cores_no; ++j)
{
ULONG_PTR mask = 0;
DWORD phys_core;
for(k = 0; k < lcpu_per_core; ++k) mask |= (ULONG_PTR)1 << (j * lcpu_per_core + k);
all_cpus_mask |= mask;
/* add to package */
if(!logical_proc_info_add_by_id( RelationProcessorPackage, p, mask ))
return STATUS_NO_MEMORY;
/* add new core */
phys_core = p * cores_per_package + j;
if(!logical_proc_info_add_by_id( RelationProcessorCore, phys_core, mask ))
return STATUS_NO_MEMORY;
for(i = 1; i < 5; ++i)
{
if(cache_ctrs[i] == 0 && cache[i].Size > 0)
{
mask = 0;
for(k = 0; k < cache_sharing[i]; ++k)
mask |= (ULONG_PTR)1 << (j * lcpu_per_core + k);
if (!logical_proc_info_add_cache( mask, &cache[i] ))
return STATUS_NO_MEMORY;
}
cache_ctrs[i] += lcpu_per_core;
if(cache_ctrs[i] == cache_sharing[i]) cache_ctrs[i] = 0;
}
}
}
/* OSX doesn't support NUMA, so just make one NUMA node for all CPUs */
if(!logical_proc_info_add_numa_node( all_cpus_mask, 0 ))
return STATUS_NO_MEMORY;
logical_proc_info_add_group( lcpu_no, all_cpus_mask );
return STATUS_SUCCESS;
}
#else
static NTSTATUS create_logical_proc_info(void)
{
FIXME("stub\n");
return STATUS_NOT_IMPLEMENTED;
}
#endif
#ifdef linux
static double tsc_from_jiffies[MAXIMUM_PROCESSORS];
static void init_tsc_frequency(void)
{
unsigned long clk_tck = sysconf( _SC_CLK_TCK );
char filename[128];
unsigned long val;
unsigned int i;
FILE *f;
for (i = 0; i < MAXIMUM_PROCESSORS; ++i)
{
if (system_cpu_mask && !(system_cpu_mask & ((ULONG_PTR)1 << i))) continue;
snprintf( filename, sizeof(filename), "/sys/devices/system/cpu/cpu%d/cpufreq/base_frequency", i );
if (!(f = fopen( filename, "r" ))) break;
if (fscanf( f, "%lu", &val ) == 1) tsc_from_jiffies[i] = 1000.0 * val / clk_tck;
fclose( f );
}
}
#else
static void init_tsc_frequency(void)
{
}
#endif
static pthread_once_t logical_proc_init_once = PTHREAD_ONCE_INIT;
static void init_logical_proc_info(void)
{
NTSTATUS status;
if ((status = create_logical_proc_info()))
{
FIXME( "Failed to get logical processor information, status %#x.\n", status );
free( logical_proc_info );
logical_proc_info = NULL;
logical_proc_info_len = 0;
free( logical_proc_info_ex );
logical_proc_info_ex = NULL;
logical_proc_info_ex_size = 0;
}
else
{
logical_proc_info = realloc( logical_proc_info, logical_proc_info_len * sizeof(*logical_proc_info) );
logical_proc_info_alloc_len = logical_proc_info_len;
logical_proc_info_ex = realloc( logical_proc_info_ex, logical_proc_info_ex_size );
logical_proc_info_ex_alloc_size = logical_proc_info_ex_size;
}
init_tsc_frequency();
}
/******************************************************************
* init_cpu_info
*
* Init a couple of places with CPU related information.
*/
void init_cpu_info(void)
{
long num;
#ifdef _SC_NPROCESSORS_ONLN
num = sysconf(_SC_NPROCESSORS_ONLN);
if (num < 1)
{
num = 1;
WARN("Failed to detect the number of processors.\n");
}
#elif defined(CTL_HW) && defined(HW_NCPU)
int mib[2];
size_t len = sizeof(num);
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
if (sysctl(mib, 2, &num, &len, NULL, 0) != 0)
{
num = 1;
WARN("Failed to detect the number of processors.\n");
}
#else
num = 1;
FIXME("Detecting the number of processors is not supported.\n");
#endif
peb->NumberOfProcessors = num;
init_cpu_model();
}
static SYSTEM_CPU_INFORMATION get_cpuinfo(void)
{
SYSTEM_CPU_INFORMATION info =
{
.ProcessorLevel = cpu_level,
.ProcessorRevision = cpu_revision,
.MaximumProcessors = peb->NumberOfProcessors,
.ProcessorFeatureBits = get_cpu_features(),
#ifdef __arm__
.ProcessorArchitecture = PROCESSOR_ARCHITECTURE_ARM,
#elif defined __aarch64__
.ProcessorArchitecture = PROCESSOR_ARCHITECTURE_ARM64,
#elif defined(__i386__)
.ProcessorArchitecture = PROCESSOR_ARCHITECTURE_INTEL,
#elif defined(__x86_64__)
.ProcessorArchitecture = PROCESSOR_ARCHITECTURE_AMD64,
#endif
};
TRACE( "CPU arch %d, level %d, rev %d, features 0x%x\n",
info.ProcessorArchitecture, info.ProcessorLevel,
info.ProcessorRevision, info.ProcessorFeatureBits );
return info;
}
static NTSTATUS create_cpuset_info(SYSTEM_CPU_SET_INFORMATION *info)
{
const SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *proc_info;
const DWORD cpu_info_size = logical_proc_info_ex_size;
BYTE core_index, cache_index, max_cache_level;
unsigned int i, j, count;
ULONG64 cpu_mask;
if (!logical_proc_info_ex) return STATUS_NOT_IMPLEMENTED;
count = peb->NumberOfProcessors;
max_cache_level = 0;
proc_info = logical_proc_info_ex;
for (i = 0; (char *)proc_info != (char *)logical_proc_info_ex + cpu_info_size; ++i)
{
if (proc_info->Relationship == RelationCache)
{
if (max_cache_level < proc_info->Cache.Level)
max_cache_level = proc_info->Cache.Level;
}
proc_info = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((BYTE *)proc_info + proc_info->Size);
}
memset(info, 0, count * sizeof(*info));
core_index = 0;
cache_index = 0;
proc_info = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)logical_proc_info_ex;
for (i = 0; i < count; ++i)
{
info[i].Size = sizeof(*info);
info[i].Type = CpuSetInformation;
info[i].CpuSet.Id = 0x100 + i;
info[i].CpuSet.LogicalProcessorIndex = i;
}
for (i = 0; (char *)proc_info != (char *)logical_proc_info_ex + cpu_info_size; ++i)
{
if (proc_info->Relationship == RelationProcessorCore)
{
if (proc_info->Processor.GroupCount != 1)
{
FIXME("Unsupported group count %u.\n", proc_info->Processor.GroupCount);
continue;
}
cpu_mask = proc_info->Processor.GroupMask[0].Mask;
for (j = 0; j < count; ++j)
if (((ULONG64)1 << j) & cpu_mask)
{
info[j].CpuSet.CoreIndex = core_index;
info[j].CpuSet.EfficiencyClass = proc_info->Processor.EfficiencyClass;
}
++core_index;
}
else if (proc_info->Relationship == RelationCache)
{
if (proc_info->Cache.Level == max_cache_level)
{
cpu_mask = proc_info->Cache.GroupMask.Mask;
for (j = 0; j < count; ++j)
if (((ULONG64)1 << j) & cpu_mask)
info[j].CpuSet.LastLevelCacheIndex = cache_index;
}
++cache_index;
}
else if (proc_info->Relationship == RelationNumaNode)
{
cpu_mask = proc_info->NumaNode.GroupMask.Mask;
for (j = 0; j < count; ++j)
if (((ULONG64)1 << j) & cpu_mask)
info[j].CpuSet.NumaNodeIndex = proc_info->NumaNode.NodeNumber;
}
proc_info = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((char *)proc_info + proc_info->Size);
}
return STATUS_SUCCESS;
}
struct smbios_buffer
{
struct smbios_prologue *prologue; /* prologue followed by data */
unsigned int size; /* allocated size past prologue */
WORD handle; /* handle count */
};
static WORD append_smbios( struct smbios_buffer *buf, struct smbios_header *hdr,
const char *strings[], unsigned int strings_count )
{
struct smbios_prologue *prologue = buf->prologue;
unsigned int i, len = hdr->length;
char *pos;
for (i = 0; i < strings_count; i++) len += strlen( strings[i] ) + 1;
len += 1 + !strings_count;
if (!prologue)
{
unsigned int size = max( 1024, len );
if (!(prologue = malloc( sizeof(*prologue) + size ))) return 0;
prologue->calling_method = 0;
prologue->major_version = SMBIOS_MAJOR_VERSION;
prologue->minor_version = SMBIOS_MINOR_VERSION;
prologue->revision = 0;
prologue->length = 0;
buf->prologue = prologue;
buf->size = size;
buf->handle = 0;
}
else if (prologue->length + len > buf->size)
{
unsigned int size = max( prologue->length + len, buf->size * 2 );
if (!(prologue = realloc( buf->prologue, sizeof(*prologue) + size ))) return 0;
buf->prologue = prologue;
buf->size = size;
}
pos = (char *)(prologue + 1) + prologue->length;
hdr->handle = buf->handle++;
memcpy( pos, hdr, hdr->length );
pos += hdr->length;
for (i = 0; i < strings_count; i++)
{
strcpy( pos, strings[i] );
pos += strlen( strings[i] ) + 1;
}
if (!strings_count) *pos++ = 0;
*pos = 0;
prologue->length += len;
return hdr->handle;
}
#define ADD_STR(str) (*(str) ? (strings[string_count] = (str), ++string_count) : 0)
static WORD append_smbios_bios( struct smbios_buffer *buf, const char *vendor, const char *version,
const char *date )
{
const char *strings[3];
unsigned int string_count = 0;
struct smbios_bios bios = { .hdr.type = SMBIOS_TYPE_BIOS, .hdr.length = sizeof(bios) };
bios.vendor = ADD_STR( vendor );
bios.version = ADD_STR( version );
bios.start = 0xe000;
bios.date = ADD_STR( date );
bios.characteristics = 0x8; /* not supported */
bios.system_bios_major_release = 0xFF; /* not supported */
bios.system_bios_minor_release = 0xFF; /* not supported */
bios.ec_firmware_major_release = 0xFF; /* not supported */
bios.ec_firmware_minor_release = 0xFF; /* not supported */
return append_smbios( buf, &bios.hdr, strings, string_count );
}
static WORD append_smbios_system( struct smbios_buffer *buf, const char *vendor, const char *product,
const char *version, const char *serial, const char *sku,
const char *family, const GUID *uuid )
{
const char *strings[6];
unsigned int string_count = 0;
struct smbios_system system = { .hdr.type = SMBIOS_TYPE_SYSTEM, .hdr.length = sizeof(system) };
system.vendor = ADD_STR( vendor );
system.product = ADD_STR( product );
system.version = ADD_STR( version );
system.serial = ADD_STR( serial );
memcpy( &system.uuid, uuid, sizeof(*uuid) );
system.wake_up_type = 0x06; /* power switch */
system.sku_number = ADD_STR( sku );
system.family = ADD_STR( family );
return append_smbios( buf, &system.hdr, strings, string_count );
}
static WORD append_smbios_chassis( struct smbios_buffer *buf, BYTE type, const char *vendor,
const char *version, const char *serial, const char *asset_tag )
{
const char *strings[4];
unsigned int string_count = 0;
struct smbios_chassis chassis = { .hdr.type = SMBIOS_TYPE_CHASSIS, .hdr.length = sizeof(chassis) };
chassis.vendor = ADD_STR( vendor );
chassis.type = type ? type : 2; /* unknown */
chassis.version = ADD_STR( version );
chassis.serial = ADD_STR( serial );
chassis.asset_tag = ADD_STR( asset_tag );
chassis.boot_state = 0x02; /* unknown */
chassis.power_supply_state = 0x02; /* unknown */
chassis.thermal_state = 0x02; /* unknown */
chassis.security_status = 0x02; /* unknown */
chassis.oem_defined = 0;
chassis.height = 0; /* undefined */
chassis.num_power_cords = 0; /* unspecified */
chassis.num_contained_elements = 0;
chassis.contained_element_rec_length = 3;
return append_smbios( buf, &chassis.hdr, strings, string_count );
}
static WORD append_smbios_board( struct smbios_buffer *buf, WORD chassis_handle, const char *vendor,
const char *product, const char *version, const char *serial,
const char *asset_tag )
{
const char *strings[5];
unsigned int string_count = 0;
struct smbios_board board = { .hdr.type = SMBIOS_TYPE_BASEBOARD, .hdr.length = sizeof(board) };
board.vendor = ADD_STR( vendor );
board.product = ADD_STR( product );
board.version = ADD_STR( version );
board.serial = ADD_STR( serial );
board.asset_tag = ADD_STR( asset_tag );
board.feature_flags = 0x5; /* hosting board, removable */
board.location = 0;
board.chassis_handle = chassis_handle;
board.board_type = 0xa; /* motherboard */
board.num_contained_handles = 0;
return append_smbios( buf, &board.hdr, strings, string_count );
}
static WORD append_smbios_processor( struct smbios_buffer *buf, WORD core_count, WORD thread_count,
WORD family, const char *socket, const char *vendor,
const char *version, const char *serial, const char *asset_tag )
{
const char *strings[5];
unsigned int string_count = 0;
struct smbios_processor proc = { .hdr.type = SMBIOS_TYPE_PROCESSOR, .hdr.length = sizeof(proc) };
proc.socket = ADD_STR( socket );
proc.type = 3; /* central processor */
proc.family = family ? min( family, 0xfe ) : 2; /* unknown */
proc.vendor = ADD_STR( vendor );
proc.id = cpu_id;
proc.version = ADD_STR( version );
proc.status = 0x41; /* cpu enabled */
proc.upgrade = 2; /* unknown */
proc.l1cache = 0xffff; /* unknown */
proc.l2cache = 0xffff; /* unknown */
proc.l3cache = 0xffff; /* unknown */
proc.serial = ADD_STR( serial );
proc.asset_tag = ADD_STR( asset_tag );
proc.core_count = min( core_count, 0xff );
proc.core_enabled = min( core_count, 0xff );
proc.thread_count = min( thread_count, 0xff );
proc.family2 = family ? family : 2;
proc.core_count2 = core_count;
proc.core_enabled2 = core_count;
proc.thread_count2 = thread_count;
if (sizeof(void *) > sizeof(int)) proc.characteristics |= 1 << 2; /* 64-bit */
if (core_count > 1) proc.characteristics |= 1 << 3; /* multi-core */
if (thread_count > core_count) proc.characteristics |= 1 << 4; /* multi-thread */
return append_smbios( buf, &proc.hdr, strings, string_count );
}
static WORD append_smbios_boot_info( struct smbios_buffer *buf )
{
struct smbios_boot_info boot = { .hdr.type = SMBIOS_TYPE_BOOTINFO, .hdr.length = sizeof(boot) };
return append_smbios( buf, &boot.hdr, NULL, 0 );
}
#ifdef __aarch64__
#ifdef linux
#include <asm/hwcap.h>
static DWORD get_core_id_regs_arm64( struct smbios_wine_id_reg_value_arm64 *regs,
WORD logical_thread_id )
{
static const char midr_el1_path[] = "/sys/devices/system/cpu/cpu%u/regs/identification/midr_el1";
char path_buf[0x100];
unsigned long value;
DWORD regidx = 0;
FILE *fp;
/* MIDR_EL1 can vary across cores, so read it from sysfs. */
snprintf( path_buf, sizeof(path_buf), midr_el1_path, logical_thread_id );
if ((fp = fopen( path_buf, "r" )))
{
fscanf( fp, "%lx", &value );
fclose( fp );
regs[regidx++] = (struct smbios_wine_id_reg_value_arm64){ 0x4000, value };
}
if (!(getauxval(AT_HWCAP) & HWCAP_CPUID))
{
WARN( "Skipping ID register population as kernel is missing emulation support.\n" );
return regidx;
}
#define STR(a) #a
#define READ_ID_REG(reg_id) \
/* mrs x0, #reg_id */ \
__asm__ __volatile__( ".inst " STR(0xd5300000 | reg_id << 5) "\n\t" \
"mov %0, x0" : "=r"(value) :: "x0" ); \
regs[regidx++] = (struct smbios_wine_id_reg_value_arm64){ reg_id, value };
/* Linux traps reads to these ID registers and emulates them. They do not vary across cores,
* if the kernel doesn't support a specific ID register it will read as zero. */
READ_ID_REG( 0x4020 ); /* ID_AA64PFR0_EL1 */
READ_ID_REG( 0x4021 ); /* ID_AA64PFR1_EL1 */
READ_ID_REG( 0x4024 ); /* ID_AA64ZFR0_EL1 */
READ_ID_REG( 0x4025 ); /* ID_AA64SMFR0_EL1 */
READ_ID_REG( 0x4028 ); /* ID_AA64DFR0_EL1 */
READ_ID_REG( 0x4029 ); /* ID_AA64DFR1_EL1 */
READ_ID_REG( 0x402c ); /* ID_AA64AFR0_EL1 */
READ_ID_REG( 0x402d ); /* ID_AA64AFR1_EL1 */
READ_ID_REG( 0x4030 ); /* ID_AA64ISAR0_EL1 */
READ_ID_REG( 0x4031 ); /* ID_AA64ISAR1_EL1 */
READ_ID_REG( 0x4032 ); /* ID_AA64ISAR2_EL1 */
READ_ID_REG( 0x4038 ); /* ID_AA64MMFR0_EL1 */
READ_ID_REG( 0x4039 ); /* ID_AA64MMFR1_EL1 */
READ_ID_REG( 0x403a ); /* ID_AA64MMFR2_EL1 */
READ_ID_REG( 0x5801 ); /* CTR_EL0 */
/* Windows exposes SCTLR_EL1, ACTLR_EL1, TTBR0_EL1 and MAIR_EL1, but these are inaccessible under
* linux so leave them unpopulated. */
#undef READ_ID_REG
#undef STR
return regidx;
}
#else
static DWORD get_core_id_regs_arm64( struct smbios_wine_id_reg_value_arm64 *regs,
WORD logical_thread_id )
{
FIXME("stub\n");
return 0;
}
#endif
static WORD append_smbios_wine_core_id_regs_arm64( struct smbios_buffer *buf, WORD ref_handle,
WORD logical_thread_id )
{
WORD length;
BYTE info_buf[0xff];
struct smbios_processor_additional_info *proc_additional_info =
(struct smbios_processor_additional_info *)info_buf;
struct smbios_wine_core_id_regs_arm64 *core_id_regs =
(struct smbios_wine_core_id_regs_arm64 *)proc_additional_info->info_block.data;
proc_additional_info->hdr.type = SMBIOS_TYPE_PROCESSOR_ADDITIONAL_INFO;
proc_additional_info->ref_handle = ref_handle;
proc_additional_info->info_block.processor_type = 5; /* 64 bit ARM */
core_id_regs->num_regs = get_core_id_regs_arm64( core_id_regs->regs, logical_thread_id );
length = sizeof(struct smbios_processor_additional_info) +
sizeof(struct smbios_wine_core_id_regs_arm64) +
core_id_regs->num_regs * sizeof(struct smbios_wine_id_reg_value_arm64);
proc_additional_info->hdr.length = length;
proc_additional_info->info_block.length = length - 6;
return append_smbios( buf, &proc_additional_info->hdr, NULL, 0 );
}
#endif
static void append_smbios_end( struct smbios_buffer *buf )
{
struct smbios_header end = { .type = SMBIOS_TYPE_END, .length = sizeof(end) };
append_smbios( buf, &end, NULL, 0 );
}
static void create_smbios_processors( struct smbios_buffer *buf )
{
char socket[20], name[49];
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *p;
UINT i, family = 0, core_count = 0, thread_count = 0, pkg_count = 0;
#ifdef __aarch64__
UINT logical_thread_id = 0;
WORD proc_handle;
#endif
pthread_once( &logical_proc_init_once, init_logical_proc_info );
strcpy( name, cpu_name );
for (i = strlen(name); i > 0 && name[i - 1] == ' '; i--) name[i - 1] = 0;
for (p = logical_proc_info_ex;
(char *)p != (char *)logical_proc_info_ex + logical_proc_info_ex_size;
p = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((char *)p + p->Size) )
{
switch (p->Relationship)
{
case RelationProcessorPackage:
if (!pkg_count++) break;
snprintf( socket, sizeof(socket), "Socket #%u", pkg_count - 1 );
#ifdef __aarch64__
proc_handle = append_smbios_processor( buf, core_count, thread_count, family,
socket, cpu_vendor, name, "", "" );
for (i = 0; i < thread_count; logical_thread_id++, i++)
append_smbios_wine_core_id_regs_arm64( buf, proc_handle, logical_thread_id );
#else
append_smbios_processor( buf, core_count, thread_count, family,
socket, cpu_vendor, name, "", "" );
#endif
core_count = thread_count = 0;
break;
case RelationProcessorCore:
core_count++;
thread_count++;
if (p->Processor.Flags & LTP_PC_SMT) thread_count++;
break;
default:
break;
}
}
snprintf( socket, sizeof(socket), "Socket #%u", pkg_count - 1 );
#ifdef __aarch64__
proc_handle = append_smbios_processor( buf, core_count, thread_count, family,
socket, cpu_vendor, name, "", "" );
/* Create these in order so they can be looked up by indexing all additional processor
* info structures by the logical thread id. */
for (i = 0; i < thread_count; logical_thread_id++, i++)
append_smbios_wine_core_id_regs_arm64( buf, proc_handle, logical_thread_id );
#else
append_smbios_processor( buf, core_count, thread_count, family, socket, cpu_vendor, name, "", "" );
#endif
}
#undef ADD_STR
#ifdef linux
static const char *get_smbios_string( const char *path, char *str, size_t size )
{
FILE *file;
size_t len;
str[0] = 0;
if (!(file = fopen(path, "r"))) return str;
len = fread( str, 1, size - 1, file );
fclose( file );
if (len >= 1 && str[len - 1] == '\n') len--;
str[len] = 0;
return str;
}
static GUID *get_system_uuid( GUID *uuid )
{
static const unsigned char hex[] =
{
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x00 */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x10 */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x20 */
0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, /* 0x30 */
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, /* 0x40 */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x50 */
0,10,11,12,13,14,15 /* 0x60 */
};
int fd;
memset( uuid, 0xff, sizeof(*uuid) );
if ((fd = open( "/var/lib/dbus/machine-id", O_RDONLY )) != -1)
{
unsigned char buf[32], *p = buf;
if (read( fd, buf, sizeof(buf) ) == sizeof(buf))
{
uuid->Data1 = hex[p[6]] << 28 | hex[p[7]] << 24 | hex[p[4]] << 20 | hex[p[5]] << 16 |
hex[p[2]] << 12 | hex[p[3]] << 8 | hex[p[0]] << 4 | hex[p[1]];
uuid->Data2 = hex[p[10]] << 12 | hex[p[11]] << 8 | hex[p[8]] << 4 | hex[p[9]];
uuid->Data3 = hex[p[14]] << 12 | hex[p[15]] << 8 | hex[p[12]] << 4 | hex[p[13]];
uuid->Data4[0] = hex[p[16]] << 4 | hex[p[17]];
uuid->Data4[1] = hex[p[18]] << 4 | hex[p[19]];
uuid->Data4[2] = hex[p[20]] << 4 | hex[p[21]];
uuid->Data4[3] = hex[p[22]] << 4 | hex[p[23]];
uuid->Data4[4] = hex[p[24]] << 4 | hex[p[25]];
uuid->Data4[5] = hex[p[26]] << 4 | hex[p[27]];
uuid->Data4[6] = hex[p[28]] << 4 | hex[p[29]];
uuid->Data4[7] = hex[p[30]] << 4 | hex[p[31]];
}
close( fd );
}
return uuid;
}
static const char *get_system_serial( char *str, size_t size )
{
get_smbios_string( "/sys/class/dmi/id/product_serial", str, size );
if (!str[0]) strcpy( str, "System Serial Number" );
return str;
}
static const char *get_chassis_serial( char *str, size_t size )
{
get_smbios_string( "/sys/class/dmi/id/chassis_serial", str, size );
if (!str[0]) strcpy( str, "Chassis Serial Number" );
return str;
}
static const char *get_board_serial( char *str, size_t size, const GUID *uuid )
{
get_smbios_string( "/sys/class/dmi/id/board_serial", str, size );
if (!str[0])
{
const BYTE *p = (const BYTE *)uuid;
snprintf( str, 33, "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X", p[0], p[1],
p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15] );
}
return str;
}
static struct smbios_prologue *create_smbios_data(void)
{
char vendor[128], version[128], date[128], product[128], serial[128];
char sku[128], family[128], asset_tag[128], type[11];
GUID uuid;
BYTE chassis;
struct smbios_buffer buf = { 0 };
#define S(s) s, sizeof(s)
append_smbios_bios( &buf,
get_smbios_string( "/sys/class/dmi/id/bios_vendor", S(vendor) ),
get_smbios_string( "/sys/class/dmi/id/bios_version", S(version) ),
get_smbios_string( "/sys/class/dmi/id/bios_date", S(date) ));
append_smbios_system( &buf,
get_smbios_string( "/sys/class/dmi/id/sys_vendor", S(vendor) ),
get_smbios_string( "/sys/class/dmi/id/product_name", S(product) ),
get_smbios_string( "/sys/class/dmi/id/product_version", S(version) ),
get_system_serial( S(serial) ),
get_smbios_string( "/sys/class/dmi/id/product_sku", S(sku) ),
get_smbios_string( "/sys/class/dmi/id/product_family", S(family) ),
get_system_uuid( &uuid ));
get_smbios_string( "/sys/class/dmi/id/chassis_type", S(type) );
chassis = append_smbios_chassis( &buf, atoi(type),
get_smbios_string( "/sys/class/dmi/id/chassis_vendor", S(vendor) ),
get_smbios_string( "/sys/class/dmi/id/chassis_version", S(version) ),
get_chassis_serial( S(serial) ),
get_smbios_string( "/sys/class/dmi/id/chassis_tag", S(asset_tag) ));
append_smbios_board( &buf, chassis,
get_smbios_string( "/sys/class/dmi/id/board_vendor", S(vendor) ),
get_smbios_string( "/sys/class/dmi/id/board_name", S(product) ),
get_smbios_string( "/sys/class/dmi/id/board_version", S(version) ),
get_board_serial( S(serial), &uuid ),
get_smbios_string( "/sys/class/dmi/id/board_asset_tag", S(asset_tag) ));
#undef S
create_smbios_processors( &buf );
append_smbios_boot_info( &buf );
append_smbios_end( &buf );
return buf.prologue;
}
#elif defined(__APPLE__)
static struct smbios_prologue *get_smbios_from_iokit(void)
{
io_service_t service;
CFDataRef data;
const UInt8 *ptr;
CFIndex len;
struct smbios_prologue *prologue;
BYTE major_version = SMBIOS_MAJOR_VERSION, minor_version = SMBIOS_MINOR_VERSION;
if (!(service = IOServiceGetMatchingService(0, IOServiceMatching("AppleSMBIOS"))))
{
WARN("can't find AppleSMBIOS service\n");
return NULL;
}
if (!(data = IORegistryEntryCreateCFProperty(service, CFSTR("SMBIOS-EPS"), kCFAllocatorDefault, 0)))
{
WARN("can't find SMBIOS entry point\n");
IOObjectRelease(service);
return NULL;
}
len = CFDataGetLength(data);
ptr = CFDataGetBytePtr(data);
if (len >= 8 && !memcmp(ptr, "_SM_", 4))
{
major_version = ptr[6];
minor_version = ptr[7];
}
CFRelease(data);
if (!(data = IORegistryEntryCreateCFProperty(service, CFSTR("SMBIOS"), kCFAllocatorDefault, 0)))
{
WARN("can't find SMBIOS table\n");
IOObjectRelease(service);
return NULL;
}
len = CFDataGetLength(data);
ptr = CFDataGetBytePtr(data);
if ((prologue = malloc( sizeof(*prologue) + len )))
{
prologue->calling_method = 0;
prologue->major_version = major_version;
prologue->minor_version = minor_version;
prologue->revision = 0;
prologue->length = len;
memcpy( prologue + 1, ptr, len );
}
CFRelease(data);
IOObjectRelease(service);
return prologue;
}
static void cf_to_string( CFTypeRef type_ref, char *buffer, size_t buffer_size )
{
buffer[0] = 0;
if (!type_ref)
return;
if (CFGetTypeID(type_ref) == CFDataGetTypeID())
{
size_t length = MIN(CFDataGetLength(type_ref), buffer_size);
CFDataGetBytes(type_ref, CFRangeMake(0, length), (UInt8*)buffer);
buffer[length] = 0;
}
else if (CFGetTypeID(type_ref) == CFStringGetTypeID())
{
CFStringGetCString(type_ref, buffer, buffer_size, kCFStringEncodingASCII);
}
CFRelease(type_ref);
}
static struct smbios_prologue *create_smbios_data(void)
{
io_service_t platform_expert;
CFDataRef cf_manufacturer, cf_model;
CFStringRef cf_serial_number, cf_uuid_string;
char manufacturer[128], model[128], serial_number[128];
GUID system_uuid = {0};
BYTE chassis;
struct smbios_buffer buf = { 0 };
struct smbios_prologue *ret;
ret = get_smbios_from_iokit();
if (ret)
{
/* wineboot requires SMBIOS 2.5 or higher tables. */
if ((ret->major_version >= 3) ||
(ret->major_version == 2 && ret->minor_version >= 5))
return ret;
else
free(ret);
}
/* Apple Silicon Macs don't have SMBIOS, we need to generate it.
* Use strings and data from IOKit when available.
*/
platform_expert = IOServiceGetMatchingService(0, IOServiceMatching("IOPlatformExpertDevice"));
if (!platform_expert)
return NULL;
cf_manufacturer = IORegistryEntryCreateCFProperty(platform_expert, CFSTR("manufacturer"), kCFAllocatorDefault, 0);
cf_model = IORegistryEntryCreateCFProperty(platform_expert, CFSTR("model"), kCFAllocatorDefault, 0);
cf_serial_number = IORegistryEntryCreateCFProperty(platform_expert, CFSTR(kIOPlatformSerialNumberKey), kCFAllocatorDefault, 0);
cf_uuid_string = IORegistryEntryCreateCFProperty(platform_expert, CFSTR(kIOPlatformUUIDKey), kCFAllocatorDefault, 0);
cf_to_string(cf_manufacturer, manufacturer, sizeof(manufacturer));
cf_to_string(cf_model, model, sizeof(model));
cf_to_string(cf_serial_number, serial_number, sizeof(serial_number));
if (cf_uuid_string)
{
CFUUIDRef cf_uuid;
CFUUIDBytes bytes;
cf_uuid = CFUUIDCreateFromString(kCFAllocatorDefault, cf_uuid_string);
bytes = CFUUIDGetUUIDBytes(cf_uuid);
system_uuid.Data1 = (bytes.byte0 << 24) | (bytes.byte1 << 16) | (bytes.byte2 << 8) | bytes.byte3;
system_uuid.Data2 = (bytes.byte4 << 8) | bytes.byte5;
system_uuid.Data3 = (bytes.byte6 << 8) | bytes.byte7;
memcpy(&system_uuid.Data4, &bytes.byte8, sizeof(system_uuid.Data4));
CFRelease(cf_uuid);
CFRelease(cf_uuid_string);
}
IOObjectRelease(platform_expert);
append_smbios_bios( &buf, manufacturer, "1.0", "01/01/2021" );
append_smbios_system( &buf, manufacturer, model, "1.0", serial_number, "", model, &system_uuid );
chassis = append_smbios_chassis( &buf, 0, manufacturer, "", serial_number, "" );
append_smbios_board( &buf, chassis, manufacturer, model, model, serial_number, "" );
create_smbios_processors( &buf );
append_smbios_boot_info( &buf );
append_smbios_end( &buf );
return buf.prologue;
}
#else
static struct smbios_prologue *create_smbios_data(void)
{
static const char *vendor = "The Wine project";
static const char *product = "Wine";
static const char *version = PACKAGE_VERSION;
static const char *serial = "0";
GUID uuid = { 0 };
BYTE chassis;
struct smbios_buffer buf = { 0 };
append_smbios_bios( &buf, vendor, version, "01/01/2021" );
append_smbios_system( &buf, vendor, product, version, serial, "", "", &uuid );
chassis = append_smbios_chassis( &buf, 0, vendor, version, serial, "" );
append_smbios_board( &buf, chassis, vendor, product, version, serial, "" );
create_smbios_processors( &buf );
append_smbios_boot_info( &buf );
append_smbios_end( &buf );
return buf.prologue;
}
#endif
static NTSTATUS enum_firmware_info( SYSTEM_FIRMWARE_TABLE_INFORMATION *sfti, ULONG available_len,
ULONG *required_len )
{
ULONG len;
switch (sfti->ProviderSignature)
{
case RSMB:
sfti->TableBufferLength = len = sizeof(UINT);
*required_len = offsetof( SYSTEM_FIRMWARE_TABLE_INFORMATION, TableBuffer[len] );
if (available_len < *required_len) return STATUS_BUFFER_TOO_SMALL;
*(UINT *)sfti->TableBuffer = 0;
return STATUS_SUCCESS;
default:
FIXME("info_class SYSTEM_FIRMWARE_TABLE_INFORMATION provider %08x\n", (unsigned int)sfti->ProviderSignature);
return STATUS_NOT_IMPLEMENTED;
}
}
static NTSTATUS get_firmware_info( SYSTEM_FIRMWARE_TABLE_INFORMATION *sfti, ULONG available_len,
ULONG *required_len )
{
static struct smbios_prologue *smbios_data;
ULONG len;
switch (sfti->ProviderSignature)
{
case RSMB:
if (!smbios_data)
{
struct smbios_prologue *data = create_smbios_data();
if (!data) return STATUS_NO_MEMORY;
if (InterlockedCompareExchangePointer( (void **)&smbios_data, data, NULL )) free( data );
}
len = sizeof(*smbios_data) + smbios_data->length;
sfti->TableBufferLength = len;
*required_len = offsetof( SYSTEM_FIRMWARE_TABLE_INFORMATION, TableBuffer[len] );
if (available_len < *required_len) return STATUS_BUFFER_TOO_SMALL;
memcpy( sfti->TableBuffer, smbios_data, len );
return STATUS_SUCCESS;
default:
FIXME("info_class SYSTEM_FIRMWARE_TABLE_INFORMATION provider %08x\n", (unsigned int)sfti->ProviderSignature);
return STATUS_NOT_IMPLEMENTED;
}
}
static void get_performance_info( SYSTEM_PERFORMANCE_INFORMATION *info )
{
unsigned long long totalram = 0, freeram = 0, totalswap = 0, freeswap = 0;
memset( info, 0, sizeof(*info) );
#if defined(linux)
{
FILE *fp;
if ((fp = fopen("/proc/uptime", "r")))
{
double uptime, idle_time;
fscanf(fp, "%lf %lf", &uptime, &idle_time);
fclose(fp);
info->IdleTime.QuadPart = 10000000 * idle_time;
}
}
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
{
static int clockrate_name[] = { CTL_KERN, KERN_CLOCKRATE };
size_t size = 0;
struct clockinfo clockrate;
long ptimes[CPUSTATES];
size = sizeof(clockrate);
if (!sysctl(clockrate_name, 2, &clockrate, &size, NULL, 0))
{
size = sizeof(ptimes);
if (!sysctlbyname("kern.cp_time", ptimes, &size, NULL, 0))
info->IdleTime.QuadPart = (ULONGLONG)ptimes[CP_IDLE] * 10000000 / clockrate.stathz;
}
}
#elif defined(__APPLE__)
{
host_name_port_t host = mach_host_self();
struct host_cpu_load_info load_info;
mach_msg_type_number_t count;
count = HOST_CPU_LOAD_INFO_COUNT;
if (host_statistics(host, HOST_CPU_LOAD_INFO, (host_info_t)&load_info, &count) == KERN_SUCCESS)
{
/* Believe it or not, based on my reading of XNU source, this is
* already in the units we want (100 ns).
*/
info->IdleTime.QuadPart = load_info.cpu_ticks[CPU_STATE_IDLE];
}
mach_port_deallocate(mach_task_self(), host);
}
#else
{
static ULONGLONG idle;
/* many programs expect IdleTime to change so fake change */
info->IdleTime.QuadPart = ++idle;
}
#endif
#ifdef linux
{
FILE *fp;
if ((fp = fopen("/proc/meminfo", "r")))
{
unsigned long long value, mem_available = 0;
char line[64];
while (fgets(line, sizeof(line), fp))
{
if(sscanf(line, "MemTotal: %llu kB", &value) == 1)
totalram += value * 1024;
else if(sscanf(line, "MemFree: %llu kB", &value) == 1)
freeram += value * 1024;
else if(sscanf(line, "SwapTotal: %llu kB", &value) == 1)
totalswap += value * 1024;
else if(sscanf(line, "SwapFree: %llu kB", &value) == 1)
freeswap += value * 1024;
else if (sscanf(line, "Buffers: %llu", &value))
freeram += value * 1024;
else if (sscanf(line, "Cached: %llu", &value))
freeram += value * 1024;
else if (sscanf(line, "MemAvailable: %llu", &value))
mem_available = value * 1024;
}
fclose(fp);
if (mem_available) freeram = mem_available;
}
}
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__NetBSD__) || \
defined(__OpenBSD__) || defined(__DragonFly__) || defined(__APPLE__)
{
#ifdef __APPLE__
unsigned int val;
#else
unsigned long val;
#endif
int mib[2];
size_t size_sys;
mib[0] = CTL_HW;
#ifdef HW_MEMSIZE
{
uint64_t val64;
mib[1] = HW_MEMSIZE;
size_sys = sizeof(val64);
if (!sysctl(mib, 2, &val64, &size_sys, NULL, 0) && size_sys == sizeof(val64)) totalram = val64;
}
#endif
#ifdef HAVE_MACH_MACH_H
{
host_name_port_t host = mach_host_self();
mach_msg_type_number_t count;
#ifdef HOST_VM_INFO64_COUNT
vm_statistics64_data_t vm_stat;
vm_size_t mac_page_size;
if (host_page_size(host, &mac_page_size) != KERN_SUCCESS)
{
mac_page_size = sysconf( _SC_PAGESIZE );
WARN("Can't get host's page size, fallback to %lx.\n", mac_page_size);
}
count = HOST_VM_INFO64_COUNT;
if (host_statistics64(host, HOST_VM_INFO64, (host_info64_t)&vm_stat, &count) == KERN_SUCCESS)
freeram = (vm_stat.free_count + vm_stat.inactive_count) * (ULONGLONG)mac_page_size;
#endif
if (!totalram)
{
host_basic_info_data_t info;
count = HOST_BASIC_INFO_COUNT;
if (host_info(host, HOST_BASIC_INFO, (host_info_t)&info, &count) == KERN_SUCCESS)
totalram = info.max_mem;
}
mach_port_deallocate(mach_task_self(), host);
}
#endif
if (!totalram)
{
mib[1] = HW_PHYSMEM;
size_sys = sizeof(val);
if (!sysctl(mib, 2, &val, &size_sys, NULL, 0) && size_sys == sizeof(val)) totalram = val;
}
if (!freeram)
{
mib[1] = HW_USERMEM;
size_sys = sizeof(val);
if (!sysctl(mib, 2, &val, &size_sys, NULL, 0) && size_sys == sizeof(val)) freeram = val;
}
#ifdef VM_SWAPUSAGE
{
struct xsw_usage swap;
mib[0] = CTL_VM;
mib[1] = VM_SWAPUSAGE;
size_sys = sizeof(swap);
if (!sysctl(mib, 2, &swap, &size_sys, NULL, 0) && size_sys == sizeof(swap))
{
totalswap = swap.xsu_total;
freeswap = swap.xsu_avail;
}
}
#endif
}
#endif
/* Titan Quest refuses to run if TotalPageFile <= TotalPhys */
if (!totalswap) totalswap = page_size;
info->AvailablePages = freeram / page_size;
info->TotalCommittedPages = (totalram + totalswap - freeram - freeswap) / page_size;
info->TotalCommitLimit = (totalram + totalswap) / page_size;
}
#ifdef linux
static void get_cpu_idle_cycle_times( ULONG64 *times )
{
unsigned int index, host_index, count;
char line[256], name[32];
unsigned long long idle;
FILE *f;
memset( times, 0, peb->NumberOfProcessors * sizeof(*times) );
if (!(f = fopen( "/proc/stat", "r" ))) return;
/* skip combined cpu statistics line. */
fgets( line, sizeof(line), f );
index = 0;
while (fgets( line, sizeof(line), f ) && index < peb->NumberOfProcessors)
{
count = sscanf(line, "%s %*u %*u %*u %llu", name, &idle);
if (count < 2 || strncmp( name, "cpu", 3 )) break;
host_index = atoi( name + 3 );
if (system_cpu_mask && !(system_cpu_mask & ((ULONG_PTR)1 << host_index))) continue;
times[index] = idle * tsc_from_jiffies[host_index];
++index;
}
fclose( f );
}
#else
static void get_cpu_idle_cycle_times( ULONG64 *times )
{
static int once;
if (!once++) FIXME( "SystemProcessorIdleCycleTimeInformation stub.\n" );
memset( times, 0, peb->NumberOfProcessors * sizeof(*times) );
}
#endif
/* calculate the mday of dst change date, so that for instance Sun 5 Oct 2007
* (last Sunday in October of 2007) becomes Sun Oct 28 2007
*
* Note: year, day and month must be in unix format.
*/
static int weekday_to_mday(int year, int day, int mon, int day_of_week)
{
struct tm date;
time_t tmp;
int wday, mday;
/* find first day in the month matching week day of the date */
memset(&date, 0, sizeof(date));
date.tm_year = year;
date.tm_mon = mon;
date.tm_mday = -1;
date.tm_wday = -1;
do
{
date.tm_mday++;
tmp = mktime(&date);
} while (date.tm_wday != day_of_week || date.tm_mon != mon);
mday = date.tm_mday;
/* find number of week days in the month matching week day of the date */
wday = 1; /* 1 - 1st, ...., 5 - last */
while (wday < day)
{
struct tm *tm;
date.tm_mday += 7;
tmp = mktime(&date);
tm = localtime(&tmp);
if (tm->tm_mon != mon)
break;
mday = tm->tm_mday;
wday++;
}
return mday;
}
static BOOL match_tz_date( const RTL_SYSTEM_TIME *st, const RTL_SYSTEM_TIME *reg_st )
{
WORD wDay;
if (st->wMonth != reg_st->wMonth) return FALSE;
if (!st->wMonth) return TRUE; /* no transition dates */
wDay = reg_st->wDay;
if (!reg_st->wYear) /* date in a day-of-week format */
wDay = weekday_to_mday(st->wYear - 1900, reg_st->wDay, reg_st->wMonth - 1, reg_st->wDayOfWeek);
/* special case for 23:59:59.999, match with 0:00:00.000 on the following day */
if (!reg_st->wYear && reg_st->wHour == 23 && reg_st->wMinute == 59 &&
reg_st->wSecond == 59 && reg_st->wMilliseconds == 999)
return (st->wDay == wDay + 1 && !st->wHour && !st->wMinute && !st->wSecond && !st->wMilliseconds);
return (st->wDay == wDay &&
st->wHour == reg_st->wHour &&
st->wMinute == reg_st->wMinute &&
st->wSecond == reg_st->wSecond &&
st->wMilliseconds == reg_st->wMilliseconds);
}
static BOOL match_tz_info( const RTL_DYNAMIC_TIME_ZONE_INFORMATION *tzi,
const RTL_DYNAMIC_TIME_ZONE_INFORMATION *reg_tzi )
{
return (tzi->Bias == reg_tzi->Bias &&
match_tz_date(&tzi->StandardDate, &reg_tzi->StandardDate) &&
match_tz_date(&tzi->DaylightDate, &reg_tzi->DaylightDate));
}
static BOOL match_past_tz_bias( time_t past_time, LONG past_bias )
{
LONG bias;
struct tm *tm;
if (!past_time) return TRUE;
tm = gmtime( &past_time );
bias = (LONG)(mktime(tm) - past_time) / 60;
return bias == past_bias;
}
static BOOL match_tz_name( const char *tz_name, const RTL_DYNAMIC_TIME_ZONE_INFORMATION *reg_tzi )
{
static const struct {
WCHAR key_name[32];
const char *short_name;
time_t past_time;
LONG past_bias;
}
mapping[] =
{
{ {'N','o','r','t','h',' ','K','o','r','e','a',' ','S','t','a','n','d','a','r','d',' ','T','i','m','e',0 },
"KST", 1451606400 /* 2016-01-01 00:00:00 UTC */, -510 },
{ {'K','o','r','e','a',' ','S','t','a','n','d','a','r','d',' ','T','i','m','e',0 },
"KST", 1451606400 /* 2016-01-01 00:00:00 UTC */, -540 },
{ {'T','o','k','y','o',' ','S','t','a','n','d','a','r','d',' ','T','i','m','e',0 },
"JST" },
{ {'Y','a','k','u','t','s','k',' ','S','t','a','n','d','a','r','d',' ','T','i','m','e',0 },
"+09" }, /* YAKST was used until tzdata 2016f */
};
unsigned int i;
if (reg_tzi->DaylightDate.wMonth) return TRUE;
for (i = 0; i < ARRAY_SIZE(mapping); i++)
{
if (!wcscmp( mapping[i].key_name, reg_tzi->TimeZoneKeyName ))
return !strcmp( mapping[i].short_name, tz_name )
&& match_past_tz_bias( mapping[i].past_time, mapping[i].past_bias );
}
return TRUE;
}
static BOOL reg_query_value( HKEY key, LPCWSTR name, DWORD type, void *data, DWORD count )
{
char buf[256];
UNICODE_STRING nameW;
KEY_VALUE_PARTIAL_INFORMATION *info = (KEY_VALUE_PARTIAL_INFORMATION *)buf;
if (count > sizeof(buf) - offsetof(KEY_VALUE_PARTIAL_INFORMATION, Data)) return FALSE;
nameW.Buffer = (WCHAR *)name;
nameW.Length = wcslen( name ) * sizeof(WCHAR);
if (NtQueryValueKey( key, &nameW, KeyValuePartialInformation, buf, sizeof(buf), &count ))
return FALSE;
if (info->Type != type) return FALSE;
memcpy( data, info->Data, info->DataLength );
return TRUE;
}
static void find_reg_tz_info(RTL_DYNAMIC_TIME_ZONE_INFORMATION *tzi, const char* tz_name, int year)
{
static const WCHAR stdW[] = { 'S','t','d',0 };
static const WCHAR dltW[] = { 'D','l','t',0 };
static const WCHAR mui_stdW[] = { 'M','U','I','_','S','t','d',0 };
static const WCHAR mui_dltW[] = { 'M','U','I','_','D','l','t',0 };
static const WCHAR tziW[] = { 'T','Z','I',0 };
static const WCHAR Time_ZonesW[] = { '\\','R','e','g','i','s','t','r','y','\\',
'M','a','c','h','i','n','e','\\',
'S','o','f','t','w','a','r','e','\\',
'M','i','c','r','o','s','o','f','t','\\',
'W','i','n','d','o','w','s',' ','N','T','\\',
'C','u','r','r','e','n','t','V','e','r','s','i','o','n','\\',
'T','i','m','e',' ','Z','o','n','e','s',0 };
static const WCHAR Dynamic_DstW[] = { 'D','y','n','a','m','i','c',' ','D','S','T',0 };
RTL_DYNAMIC_TIME_ZONE_INFORMATION reg_tzi;
HANDLE key, subkey, subkey_dyn = 0;
ULONG idx, len;
OBJECT_ATTRIBUTES attr;
UNICODE_STRING nameW;
WCHAR yearW[16];
char buffer[128];
KEY_BASIC_INFORMATION *info = (KEY_BASIC_INFORMATION *)buffer;
snprintf( buffer, sizeof(buffer), "%u", year );
ascii_to_unicode( yearW, buffer, strlen(buffer) + 1 );
init_unicode_string( &nameW, Time_ZonesW );
InitializeObjectAttributes( &attr, &nameW, 0, 0, NULL );
if (NtOpenKey( &key, KEY_READ, &attr )) return;
idx = 0;
while (!NtEnumerateKey( key, idx++, KeyBasicInformation, buffer, sizeof(buffer), &len ))
{
struct tz_reg_data
{
LONG bias;
LONG std_bias;
LONG dlt_bias;
RTL_SYSTEM_TIME std_date;
RTL_SYSTEM_TIME dlt_date;
} tz_data;
BOOL is_dynamic = FALSE;
nameW.Buffer = info->Name;
nameW.Length = info->NameLength;
attr.RootDirectory = key;
if (NtOpenKey( &subkey, KEY_READ, &attr )) continue;
memset( &reg_tzi, 0, sizeof(reg_tzi) );
memcpy(reg_tzi.TimeZoneKeyName, nameW.Buffer, nameW.Length);
reg_tzi.TimeZoneKeyName[nameW.Length/sizeof(WCHAR)] = 0;
if (!reg_query_value(subkey, mui_stdW, REG_SZ, reg_tzi.StandardName, sizeof(reg_tzi.StandardName)) &&
!reg_query_value(subkey, stdW, REG_SZ, reg_tzi.StandardName, sizeof(reg_tzi.StandardName)))
goto next;
if (!reg_query_value(subkey, mui_dltW, REG_SZ, reg_tzi.DaylightName, sizeof(reg_tzi.DaylightName)) &&
!reg_query_value(subkey, dltW, REG_SZ, reg_tzi.DaylightName, sizeof(reg_tzi.DaylightName)))
goto next;
/* Check for Dynamic DST entry first */
nameW.Buffer = (WCHAR *)Dynamic_DstW;
nameW.Length = sizeof(Dynamic_DstW) - sizeof(WCHAR);
attr.RootDirectory = subkey;
if (!NtOpenKey( &subkey_dyn, KEY_READ, &attr ))
{
is_dynamic = reg_query_value( subkey_dyn, yearW, REG_BINARY, &tz_data, sizeof(tz_data) );
NtClose( subkey_dyn );
}
if (!is_dynamic && !reg_query_value( subkey, tziW, REG_BINARY, &tz_data, sizeof(tz_data) ))
goto next;
reg_tzi.Bias = tz_data.bias;
reg_tzi.StandardBias = tz_data.std_bias;
reg_tzi.DaylightBias = tz_data.dlt_bias;
reg_tzi.StandardDate = tz_data.std_date;
reg_tzi.DaylightDate = tz_data.dlt_date;
TRACE("%s: bias %d\n", debugstr_us(&nameW), reg_tzi.Bias);
TRACE("std (d/m/y): %u/%02u/%04u day of week %u %u:%02u:%02u.%03u bias %d\n",
reg_tzi.StandardDate.wDay, reg_tzi.StandardDate.wMonth,
reg_tzi.StandardDate.wYear, reg_tzi.StandardDate.wDayOfWeek,
reg_tzi.StandardDate.wHour, reg_tzi.StandardDate.wMinute,
reg_tzi.StandardDate.wSecond, reg_tzi.StandardDate.wMilliseconds,
reg_tzi.StandardBias);
TRACE("dst (d/m/y): %u/%02u/%04u day of week %u %u:%02u:%02u.%03u bias %d\n",
reg_tzi.DaylightDate.wDay, reg_tzi.DaylightDate.wMonth,
reg_tzi.DaylightDate.wYear, reg_tzi.DaylightDate.wDayOfWeek,
reg_tzi.DaylightDate.wHour, reg_tzi.DaylightDate.wMinute,
reg_tzi.DaylightDate.wSecond, reg_tzi.DaylightDate.wMilliseconds,
reg_tzi.DaylightBias);
if (match_tz_info( tzi, &reg_tzi ) && match_tz_name( tz_name, &reg_tzi ))
{
*tzi = reg_tzi;
NtClose( subkey );
NtClose( key );
return;
}
next:
NtClose( subkey );
}
NtClose( key );
if (idx == 1) return; /* registry info not initialized yet */
FIXME("Can't find matching timezone information in the registry for "
"%s, bias %d, std (d/m/y): %u/%02u/%04u, dlt (d/m/y): %u/%02u/%04u\n",
tz_name, tzi->Bias,
tzi->StandardDate.wDay, tzi->StandardDate.wMonth, tzi->StandardDate.wYear,
tzi->DaylightDate.wDay, tzi->DaylightDate.wMonth, tzi->DaylightDate.wYear);
}
static time_t find_dst_change(time_t start, time_t end, int *is_dst)
{
struct tm *tm;
ULONGLONG min = (sizeof(time_t) == sizeof(int)) ? (ULONG)start : start;
ULONGLONG max = (sizeof(time_t) == sizeof(int)) ? (ULONG)end : end;
tm = localtime(&start);
*is_dst = !tm->tm_isdst;
TRACE("starting date isdst %d, %s", !*is_dst, ctime(&start));
while (min <= max)
{
time_t pos = (min + max) / 2;
tm = localtime(&pos);
if (tm->tm_isdst != *is_dst)
min = pos + 1;
else
max = pos - 1;
}
return min;
}
static void get_timezone_info( RTL_DYNAMIC_TIME_ZONE_INFORMATION *tzi )
{
static RTL_DYNAMIC_TIME_ZONE_INFORMATION cached_tzi;
static int current_year = -1, current_bias = 65535;
struct tm *tm;
char tz_name[16];
time_t year_start, year_end, tmp, dlt = 0, std = 0;
int is_dst, bias;
mutex_lock( &timezone_mutex );
year_start = time(NULL);
tm = gmtime(&year_start);
bias = (LONG)(mktime(tm) - year_start) / 60;
tm = localtime(&year_start);
if (current_year == tm->tm_year && current_bias == bias)
{
*tzi = cached_tzi;
mutex_unlock( &timezone_mutex );
return;
}
memset(tzi, 0, sizeof(*tzi));
if (!strftime(tz_name, sizeof(tz_name), "%Z", tm)) {
/* not enough room or another error */
tz_name[0] = '\0';
}
TRACE("tz data will be valid through year %d, bias %d\n", tm->tm_year + 1900, bias);
current_year = tm->tm_year;
current_bias = bias;
tzi->Bias = bias;
tm->tm_isdst = 0;
tm->tm_mday = 1;
tm->tm_mon = tm->tm_hour = tm->tm_min = tm->tm_sec = tm->tm_wday = tm->tm_yday = 0;
year_start = mktime(tm);
TRACE("year_start: %s", ctime(&year_start));
tm->tm_mday = tm->tm_wday = tm->tm_yday = 0;
tm->tm_mon = 12;
tm->tm_hour = 23;
tm->tm_min = tm->tm_sec = 59;
year_end = mktime(tm);
TRACE("year_end: %s", ctime(&year_end));
tmp = find_dst_change(year_start, year_end, &is_dst);
if (is_dst)
dlt = tmp;
else
std = tmp;
tmp = find_dst_change(tmp, year_end, &is_dst);
if (is_dst)
dlt = tmp;
else
std = tmp;
TRACE("std: %s", ctime(&std));
TRACE("dlt: %s", ctime(&dlt));
if (dlt == std || !dlt || !std)
TRACE("there is no daylight saving rules in this time zone\n");
else
{
tmp = dlt - tzi->Bias * 60;
tm = gmtime(&tmp);
TRACE("dlt gmtime: %s", asctime(tm));
tzi->DaylightBias = -60;
tzi->DaylightDate.wYear = tm->tm_year + 1900;
tzi->DaylightDate.wMonth = tm->tm_mon + 1;
tzi->DaylightDate.wDayOfWeek = tm->tm_wday;
tzi->DaylightDate.wDay = tm->tm_mday;
tzi->DaylightDate.wHour = tm->tm_hour;
tzi->DaylightDate.wMinute = tm->tm_min;
tzi->DaylightDate.wSecond = tm->tm_sec;
tzi->DaylightDate.wMilliseconds = 0;
TRACE("daylight (d/m/y): %u/%02u/%04u day of week %u %u:%02u:%02u.%03u bias %d\n",
tzi->DaylightDate.wDay, tzi->DaylightDate.wMonth,
tzi->DaylightDate.wYear, tzi->DaylightDate.wDayOfWeek,
tzi->DaylightDate.wHour, tzi->DaylightDate.wMinute,
tzi->DaylightDate.wSecond, tzi->DaylightDate.wMilliseconds,
tzi->DaylightBias);
tmp = std - tzi->Bias * 60 - tzi->DaylightBias * 60;
tm = gmtime(&tmp);
TRACE("std gmtime: %s", asctime(tm));
tzi->StandardBias = 0;
tzi->StandardDate.wYear = tm->tm_year + 1900;
tzi->StandardDate.wMonth = tm->tm_mon + 1;
tzi->StandardDate.wDayOfWeek = tm->tm_wday;
tzi->StandardDate.wDay = tm->tm_mday;
tzi->StandardDate.wHour = tm->tm_hour;
tzi->StandardDate.wMinute = tm->tm_min;
tzi->StandardDate.wSecond = tm->tm_sec;
tzi->StandardDate.wMilliseconds = 0;
TRACE("standard (d/m/y): %u/%02u/%04u day of week %u %u:%02u:%02u.%03u bias %d\n",
tzi->StandardDate.wDay, tzi->StandardDate.wMonth,
tzi->StandardDate.wYear, tzi->StandardDate.wDayOfWeek,
tzi->StandardDate.wHour, tzi->StandardDate.wMinute,
tzi->StandardDate.wSecond, tzi->StandardDate.wMilliseconds,
tzi->StandardBias);
}
find_reg_tz_info(tzi, tz_name, current_year + 1900);
cached_tzi = *tzi;
mutex_unlock( &timezone_mutex );
}
static void read_dev_urandom( void *buf, ULONG len )
{
int fd = open( "/dev/urandom", O_RDONLY );
if (fd != -1)
{
int ret;
do
{
ret = read( fd, buf, len );
}
while (ret == -1 && errno == EINTR);
close( fd );
}
else WARN( "can't open /dev/urandom\n" );
}
static unsigned int get_system_process_info( SYSTEM_INFORMATION_CLASS class, void *info, ULONG size, ULONG *len )
{
unsigned int process_count, total_thread_count, total_name_len, i, j;
unsigned int thread_info_size;
unsigned int pos = 0;
char *buffer = NULL;
unsigned int ret;
C_ASSERT( sizeof(struct thread_info) <= sizeof(SYSTEM_THREAD_INFORMATION) );
C_ASSERT( sizeof(struct process_info) <= sizeof(SYSTEM_PROCESS_INFORMATION) );
if (class == SystemExtendedProcessInformation)
thread_info_size = sizeof(SYSTEM_EXTENDED_THREAD_INFORMATION);
else
thread_info_size = sizeof(SYSTEM_THREAD_INFORMATION);
*len = 0;
if (size && !(buffer = malloc( size ))) return STATUS_NO_MEMORY;
SERVER_START_REQ( list_processes )
{
wine_server_set_reply( req, buffer, size );
ret = wine_server_call( req );
total_thread_count = reply->total_thread_count;
total_name_len = reply->total_name_len;
process_count = reply->process_count;
}
SERVER_END_REQ;
if (ret)
{
if (ret == STATUS_INFO_LENGTH_MISMATCH)
*len = sizeof(SYSTEM_PROCESS_INFORMATION) * process_count
+ (total_name_len + process_count) * sizeof(WCHAR)
+ total_thread_count * thread_info_size;
free( buffer );
return ret;
}
for (i = 0; i < process_count; i++)
{
SYSTEM_PROCESS_INFORMATION *nt_process = (SYSTEM_PROCESS_INFORMATION *)((char *)info + *len);
const struct process_info *server_process;
const WCHAR *server_name, *file_part;
ULONG proc_len;
ULONG name_len = 0;
pos = (pos + 7) & ~7;
server_process = (const struct process_info *)(buffer + pos);
pos += sizeof(*server_process);
server_name = (const WCHAR *)(buffer + pos);
file_part = server_name + (server_process->name_len / sizeof(WCHAR));
pos += server_process->name_len;
while (file_part > server_name && file_part[-1] != '\\')
{
file_part--;
name_len++;
}
proc_len = sizeof(*nt_process) + server_process->thread_count * thread_info_size
+ (name_len + 1) * sizeof(WCHAR);
proc_len = (proc_len + 7) & ~(ULONG_PTR)7;
*len += proc_len;
if (*len <= size)
{
memset(nt_process, 0, proc_len);
if (i < process_count - 1)
nt_process->NextEntryOffset = proc_len;
nt_process->CreationTime.QuadPart = server_process->start_time;
nt_process->dwThreadCount = server_process->thread_count;
nt_process->dwBasePriority = server_process->priority;
nt_process->UniqueProcessId = UlongToHandle(server_process->pid);
nt_process->ParentProcessId = UlongToHandle(server_process->parent_pid);
nt_process->SessionId = server_process->session_id;
nt_process->HandleCount = server_process->handle_count;
get_thread_times( server_process->unix_pid, -1, &nt_process->KernelTime, &nt_process->UserTime );
fill_vm_counters( &nt_process->vmCounters, server_process->unix_pid );
}
pos = (pos + 7) & ~7;
for (j = 0; j < server_process->thread_count; j++)
{
const struct thread_info *server_thread = (const struct thread_info *)(buffer + pos);
SYSTEM_EXTENDED_THREAD_INFORMATION *ti;
if (*len <= size)
{
ti = (SYSTEM_EXTENDED_THREAD_INFORMATION *)((BYTE *)nt_process->ti + j * thread_info_size);
ti->ThreadInfo.CreateTime.QuadPart = server_thread->start_time;
ti->ThreadInfo.ClientId.UniqueProcess = UlongToHandle(server_process->pid);
ti->ThreadInfo.ClientId.UniqueThread = UlongToHandle(server_thread->tid);
ti->ThreadInfo.dwCurrentPriority = server_thread->current_priority;
ti->ThreadInfo.dwBasePriority = server_thread->base_priority;
get_thread_times( server_process->unix_pid, server_thread->unix_tid,
&ti->ThreadInfo.KernelTime, &ti->ThreadInfo.UserTime );
if (class == SystemExtendedProcessInformation)
{
ti->Win32StartAddress = wine_server_get_ptr( server_thread->entry_point );
ti->TebBase = wine_server_get_ptr( server_thread->teb );
}
}
pos += sizeof(*server_thread);
}
if (*len <= size)
{
nt_process->ProcessName.Buffer = (WCHAR *)((BYTE *)nt_process->ti
+ server_process->thread_count * thread_info_size);
nt_process->ProcessName.Length = name_len * sizeof(WCHAR);
nt_process->ProcessName.MaximumLength = (name_len + 1) * sizeof(WCHAR);
memcpy(nt_process->ProcessName.Buffer, file_part, name_len * sizeof(WCHAR));
nt_process->ProcessName.Buffer[name_len] = 0;
}
}
if (*len > size) ret = STATUS_INFO_LENGTH_MISMATCH;
free( buffer );
return ret;
}
/******************************************************************************
* NtQuerySystemInformation (NTDLL.@)
*/
NTSTATUS WINAPI NtQuerySystemInformation( SYSTEM_INFORMATION_CLASS class,
void *info, ULONG size, ULONG *ret_size )
{
unsigned int ret = STATUS_SUCCESS;
ULONG len = 0;
TRACE( "(0x%08x,%p,0x%08x,%p)\n", class, info, size, ret_size );
switch (class)
{
case SystemNativeBasicInformation: /* 114 */
if (!is_win64) return STATUS_INVALID_INFO_CLASS;
/* fall through */
case SystemBasicInformation: /* 0 */
{
SYSTEM_BASIC_INFORMATION sbi;
virtual_get_system_info( &sbi, FALSE );
len = sizeof(sbi);
if (size == len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &sbi, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemCpuInformation: /* 1 */
if (size >= (len = sizeof(SYSTEM_CPU_INFORMATION)))
{
SYSTEM_CPU_INFORMATION cpu = get_cpuinfo();
memcpy( info, &cpu, len );
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
case SystemPerformanceInformation: /* 2 */
{
SYSTEM_PERFORMANCE_INFORMATION spi;
static BOOL fixme_written = FALSE;
get_performance_info( &spi );
len = sizeof(spi);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &spi, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
if(!fixme_written) {
FIXME("info_class SYSTEM_PERFORMANCE_INFORMATION\n");
fixme_written = TRUE;
}
break;
}
case SystemTimeOfDayInformation: /* 3 */
{
static LONGLONG last_bias;
static time_t last_utc;
struct tm *tm;
time_t utc;
SYSTEM_TIMEOFDAY_INFORMATION sti = {{{ 0 }}};
sti.BootTime.QuadPart = server_start_time;
utc = time( NULL );
pthread_mutex_lock( &timezone_mutex );
if (utc != last_utc)
{
last_utc = utc;
tm = gmtime( &utc );
last_bias = mktime( tm ) - utc;
tm = localtime( &utc );
if (tm->tm_isdst) last_bias -= 3600;
last_bias *= TICKSPERSEC;
}
sti.TimeZoneBias.QuadPart = last_bias;
pthread_mutex_unlock( &timezone_mutex );
NtQuerySystemTime( &sti.SystemTime );
if (size <= sizeof(sti))
{
len = size;
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &sti, size);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemProcessInformation: /* 5 */
ret = get_system_process_info( class, info, size, &len );
break;
case SystemProcessorPerformanceInformation: /* 8 */
{
SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION *sppi = NULL;
unsigned int cpus = 0;
int out_cpus = size / sizeof(SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION);
if (out_cpus == 0)
{
len = 0;
ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
if (!(sppi = calloc( out_cpus, sizeof(*sppi) )))
{
ret = STATUS_NO_MEMORY;
break;
}
else
#ifdef __APPLE__
{
processor_cpu_load_info_data_t *pinfo;
mach_msg_type_number_t info_count;
host_name_port_t host = mach_host_self ();
if (host_processor_info( host,
PROCESSOR_CPU_LOAD_INFO,
&cpus,
(processor_info_array_t*)&pinfo,
&info_count) == 0)
{
int i;
cpus = min(cpus,out_cpus);
for (i = 0; i < cpus; i++)
{
sppi[i].IdleTime.QuadPart = pinfo[i].cpu_ticks[CPU_STATE_IDLE];
sppi[i].KernelTime.QuadPart = pinfo[i].cpu_ticks[CPU_STATE_SYSTEM];
sppi[i].UserTime.QuadPart = pinfo[i].cpu_ticks[CPU_STATE_USER];
}
vm_deallocate (mach_task_self (), (vm_address_t) pinfo, info_count * sizeof(natural_t));
}
mach_port_deallocate (mach_task_self (), host);
}
#elif defined(linux)
{
FILE *cpuinfo = fopen("/proc/stat", "r");
if (cpuinfo)
{
unsigned long clk_tck = sysconf(_SC_CLK_TCK);
unsigned long usr,nice,sys,idle,remainder[8];
int i, count, id;
char name[32];
char line[255];
/* first line is combined usage */
while (fgets(line,255,cpuinfo))
{
count = sscanf(line, "%s %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
name, &usr, &nice, &sys, &idle,
&remainder[0], &remainder[1], &remainder[2], &remainder[3],
&remainder[4], &remainder[5], &remainder[6], &remainder[7]);
if (count < 5 || strncmp( name, "cpu", 3 )) break;
for (i = 0; i + 5 < count; ++i) sys += remainder[i];
sys += idle;
usr += nice;
id = atoi( name + 3 ) + 1;
if (id > out_cpus) break;
if (id > cpus) cpus = id;
sppi[id-1].IdleTime.QuadPart = (ULONGLONG)idle * 10000000 / clk_tck;
sppi[id-1].KernelTime.QuadPart = (ULONGLONG)sys * 10000000 / clk_tck;
sppi[id-1].UserTime.QuadPart = (ULONGLONG)usr * 10000000 / clk_tck;
}
fclose(cpuinfo);
}
}
#elif defined(__FreeBSD__) || defined (__FreeBSD_kernel__)
{
static int clockrate_name[] = { CTL_KERN, KERN_CLOCKRATE };
size_t size = 0;
struct clockinfo clockrate;
int have_clockrate;
long *ptimes;
size = sizeof(clockrate);
have_clockrate = !sysctl(clockrate_name, 2, &clockrate, &size, NULL, 0);
size = out_cpus * CPUSTATES * sizeof(long);
ptimes = malloc(size + 1);
if (ptimes)
{
if (have_clockrate && (!sysctlbyname("kern.cp_times", ptimes, &size, NULL, 0) || errno == ENOMEM))
{
for (cpus = 0; cpus < out_cpus; cpus++)
{
if (cpus * CPUSTATES * sizeof(long) >= size) break;
sppi[cpus].IdleTime.QuadPart = (ULONGLONG)ptimes[cpus*CPUSTATES + CP_IDLE] * 10000000 / clockrate.stathz;
sppi[cpus].KernelTime.QuadPart = (ULONGLONG)ptimes[cpus*CPUSTATES + CP_SYS] * 10000000 / clockrate.stathz;
sppi[cpus].UserTime.QuadPart = (ULONGLONG)ptimes[cpus*CPUSTATES + CP_USER] * 10000000 / clockrate.stathz;
}
}
free(ptimes);
}
}
#endif
if (cpus == 0)
{
static int i = 1;
unsigned int n;
cpus = min(peb->NumberOfProcessors, out_cpus);
FIXME("stub info_class SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION\n");
/* many programs expect these values to change so fake change */
for (n = 0; n < cpus; n++)
{
sppi[n].KernelTime.QuadPart = 1 * i;
sppi[n].UserTime.QuadPart = 2 * i;
sppi[n].IdleTime.QuadPart = 3 * i;
}
i++;
}
len = sizeof(*sppi) * cpus;
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, sppi, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
free( sppi );
break;
}
case SystemModuleInformation: /* 11 */
{
/* FIXME: return some fake info for now */
static const char *fake_modules[] =
{
"\\SystemRoot\\system32\\ntoskrnl.exe",
"\\SystemRoot\\system32\\hal.dll",
"\\SystemRoot\\system32\\drivers\\mountmgr.sys"
};
ULONG i;
RTL_PROCESS_MODULES *smi = info;
len = offsetof( RTL_PROCESS_MODULES, Modules[ARRAY_SIZE(fake_modules)] );
if (len <= size)
{
memset( smi, 0, len );
for (i = 0; i < ARRAY_SIZE(fake_modules); i++)
{
RTL_PROCESS_MODULE_INFORMATION *sm = &smi->Modules[i];
sm->ImageBaseAddress = (char *)0x10000000 + 0x200000 * i;
sm->ImageSize = 0x200000;
sm->LoadOrderIndex = i;
sm->LoadCount = 1;
strcpy( (char *)sm->Name, fake_modules[i] );
sm->NameOffset = strrchr( fake_modules[i], '\\' ) - fake_modules[i] + 1;
}
smi->ModulesCount = i;
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemHandleInformation: /* 16 */
{
struct handle_info *handle_info;
DWORD i, num_handles;
if (size < sizeof(SYSTEM_HANDLE_INFORMATION))
{
ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
if (!info)
{
ret = STATUS_ACCESS_VIOLATION;
break;
}
num_handles = (size - FIELD_OFFSET( SYSTEM_HANDLE_INFORMATION, Handle )) / sizeof(SYSTEM_HANDLE_ENTRY);
if (!(handle_info = malloc( sizeof(*handle_info) * num_handles ))) return STATUS_NO_MEMORY;
SERVER_START_REQ( get_system_handles )
{
wine_server_set_reply( req, handle_info, sizeof(*handle_info) * num_handles );
if (!(ret = wine_server_call( req )))
{
SYSTEM_HANDLE_INFORMATION *shi = info;
shi->Count = wine_server_reply_size( req ) / sizeof(*handle_info);
len = FIELD_OFFSET( SYSTEM_HANDLE_INFORMATION, Handle[shi->Count] );
for (i = 0; i < shi->Count; i++)
{
memset( &shi->Handle[i], 0, sizeof(shi->Handle[i]) );
shi->Handle[i].OwnerPid = handle_info[i].owner;
shi->Handle[i].HandleValue = handle_info[i].handle;
shi->Handle[i].AccessMask = handle_info[i].access;
shi->Handle[i].HandleFlags = handle_info[i].attributes;
shi->Handle[i].ObjectType = handle_info[i].type;
/* FIXME: Fill out ObjectPointer */
}
}
else if (ret == STATUS_BUFFER_TOO_SMALL)
{
len = FIELD_OFFSET( SYSTEM_HANDLE_INFORMATION, Handle[reply->count] );
ret = STATUS_INFO_LENGTH_MISMATCH;
}
}
SERVER_END_REQ;
free( handle_info );
break;
}
case SystemFileCacheInformation: /* 21 */
{
SYSTEM_CACHE_INFORMATION sci = { 0 };
len = sizeof(sci);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &sci, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
FIXME("info_class SYSTEM_CACHE_INFORMATION\n");
break;
}
case SystemInterruptInformation: /* 23 */
{
len = peb->NumberOfProcessors * sizeof(SYSTEM_INTERRUPT_INFORMATION);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else
{
#ifdef HAVE_GETRANDOM
int ret;
do
{
ret = getrandom( info, len, 0 );
}
while (ret == -1 && errno == EINTR);
if (ret == -1 && errno == ENOSYS) read_dev_urandom( info, len );
#else
read_dev_urandom( info, len );
#endif
}
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemTimeAdjustmentInformation: /* 28 */
{
SYSTEM_TIME_ADJUSTMENT_QUERY query = { 156250, 156250, TRUE };
len = sizeof(query);
if (size == len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &query, len );
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemKernelDebuggerInformation: /* 35 */
{
SYSTEM_KERNEL_DEBUGGER_INFORMATION skdi;
skdi.DebuggerEnabled = FALSE;
skdi.DebuggerNotPresent = TRUE;
len = sizeof(skdi);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &skdi, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemRegistryQuotaInformation: /* 37 */
{
/* Something to do with the size of the registry *
* Since we don't have a size limitation, fake it *
* This is almost certainly wrong. *
* This sets each of the three words in the struct to 32 MB, *
* which is enough to make the IE 5 installer happy. */
SYSTEM_REGISTRY_QUOTA_INFORMATION srqi;
srqi.RegistryQuotaAllowed = 0x2000000;
srqi.RegistryQuotaUsed = 0x200000;
srqi.Reserved1 = (void*)0x200000;
len = sizeof(srqi);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else
{
FIXME("SystemRegistryQuotaInformation: faking max registry size of 32 MB\n");
memcpy( info, &srqi, len);
}
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemCurrentTimeZoneInformation: /* 44 */
{
RTL_DYNAMIC_TIME_ZONE_INFORMATION tz;
get_timezone_info( &tz );
len = sizeof(RTL_TIME_ZONE_INFORMATION);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &tz, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemExtendedProcessInformation: /* 57 */
ret = get_system_process_info( class, info, size, &len );
break;
case SystemRecommendedSharedDataAlignment: /* 58 */
{
len = sizeof(DWORD);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else
{
#ifdef __arm__
*((DWORD *)info) = 32;
#elif defined __aarch64__
*((DWORD *)info) = 128;
#else
*((DWORD *)info) = 64;
#endif
}
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemEmulationBasicInformation: /* 62 */
{
SYSTEM_BASIC_INFORMATION sbi;
virtual_get_system_info( &sbi, is_wow64() );
len = sizeof(sbi);
if (size == len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &sbi, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemEmulationProcessorInformation: /* 63 */
if (size >= (len = sizeof(SYSTEM_CPU_INFORMATION)))
{
SYSTEM_CPU_INFORMATION cpu = get_cpuinfo();
if (is_win64)
{
if (cpu.ProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
cpu.ProcessorArchitecture = PROCESSOR_ARCHITECTURE_INTEL;
else if (cpu.ProcessorArchitecture == PROCESSOR_ARCHITECTURE_ARM64)
cpu.ProcessorArchitecture = PROCESSOR_ARCHITECTURE_ARM;
}
memcpy(info, &cpu, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
case SystemExtendedHandleInformation: /* 64 */
{
struct handle_info *handle_info;
DWORD i, num_handles;
if (size < sizeof(SYSTEM_HANDLE_INFORMATION_EX))
{
ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
if (!info)
{
ret = STATUS_ACCESS_VIOLATION;
break;
}
num_handles = (size - FIELD_OFFSET( SYSTEM_HANDLE_INFORMATION_EX, Handles ))
/ sizeof(SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX);
if (!(handle_info = malloc( sizeof(*handle_info) * num_handles ))) return STATUS_NO_MEMORY;
SERVER_START_REQ( get_system_handles )
{
wine_server_set_reply( req, handle_info, sizeof(*handle_info) * num_handles );
if (!(ret = wine_server_call( req )))
{
SYSTEM_HANDLE_INFORMATION_EX *shi = info;
shi->NumberOfHandles = wine_server_reply_size( req ) / sizeof(*handle_info);
len = FIELD_OFFSET( SYSTEM_HANDLE_INFORMATION_EX, Handles[shi->NumberOfHandles] );
for (i = 0; i < shi->NumberOfHandles; i++)
{
memset( &shi->Handles[i], 0, sizeof(shi->Handles[i]) );
shi->Handles[i].UniqueProcessId = handle_info[i].owner;
shi->Handles[i].HandleValue = handle_info[i].handle;
shi->Handles[i].GrantedAccess = handle_info[i].access;
shi->Handles[i].HandleAttributes = handle_info[i].attributes;
shi->Handles[i].ObjectTypeIndex = handle_info[i].type;
/* FIXME: Fill out Object */
}
}
else if (ret == STATUS_BUFFER_TOO_SMALL)
{
len = FIELD_OFFSET( SYSTEM_HANDLE_INFORMATION_EX, Handles[reply->count] );
ret = STATUS_INFO_LENGTH_MISMATCH;
}
}
SERVER_END_REQ;
free( handle_info );
break;
}
case SystemLogicalProcessorInformation: /* 73 */
pthread_once( &logical_proc_init_once, init_logical_proc_info );
if (!logical_proc_info)
{
ret = STATUS_NOT_IMPLEMENTED;
break;
}
len = logical_proc_info_len * sizeof(*logical_proc_info);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, logical_proc_info, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
case SystemFirmwareTableInformation: /* 76 */
{
SYSTEM_FIRMWARE_TABLE_INFORMATION *sfti = info;
len = FIELD_OFFSET(SYSTEM_FIRMWARE_TABLE_INFORMATION, TableBuffer);
if (size < len)
{
ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
len = 0;
switch (sfti->Action)
{
case SystemFirmwareTable_Enumerate:
ret = enum_firmware_info(sfti, size, &len);
break;
case SystemFirmwareTable_Get:
ret = get_firmware_info(sfti, size, &len);
break;
default:
ret = STATUS_NOT_IMPLEMENTED;
FIXME("info_class SYSTEM_FIRMWARE_TABLE_INFORMATION action %d\n", sfti->Action);
}
break;
}
case SystemModuleInformationEx: /* 77 */
{
/* FIXME: return some fake info for now */
static const char *fake_modules[] =
{
"\\SystemRoot\\system32\\ntoskrnl.exe",
"\\SystemRoot\\system32\\hal.dll",
"\\SystemRoot\\system32\\drivers\\mountmgr.sys"
};
ULONG i;
RTL_PROCESS_MODULE_INFORMATION_EX *module_info = info;
len = sizeof(*module_info) * ARRAY_SIZE(fake_modules) + sizeof(module_info->NextOffset);
if (len <= size)
{
memset( info, 0, len );
for (i = 0; i < ARRAY_SIZE(fake_modules); i++)
{
RTL_PROCESS_MODULE_INFORMATION *sm = &module_info[i].BaseInfo;
sm->ImageBaseAddress = (char *)0x10000000 + 0x200000 * i;
sm->ImageSize = 0x200000;
sm->LoadOrderIndex = i;
sm->LoadCount = 1;
strcpy( (char *)sm->Name, fake_modules[i] );
sm->NameOffset = strrchr( fake_modules[i], '\\' ) - fake_modules[i] + 1;
module_info[i].NextOffset = sizeof(*module_info);
}
module_info[ARRAY_SIZE(fake_modules)].NextOffset = 0;
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemProcessorIdleCycleTimeInformation: /* 83 */
{
ULONG group_id = 0; /* FIXME: should probably be current CPU group id. */
return NtQuerySystemInformationEx( class, &group_id, sizeof(group_id), info, size, ret_size );
}
case SystemProcessIdInformation: /* 88 */
{
SYSTEM_PROCESS_ID_INFORMATION *id = info;
UNICODE_STRING *str = &id->ImageName;
ULONG name_len = 0;
void *buffer;
len = sizeof(*id);
if (ret_size) *ret_size = len;
if (len > size) ret = STATUS_INFO_LENGTH_MISMATCH;
else if (id->ImageName.Length) ret = STATUS_INVALID_PARAMETER;
else if (!id->ProcessId) ret = STATUS_INVALID_CID;
if (ret) return ret;
buffer = malloc( str->MaximumLength );
SERVER_START_REQ( get_process_image_name )
{
req->pid = id->ProcessId;
wine_server_set_reply( req, buffer, str->MaximumLength );
ret = wine_server_call( req );
name_len = reply->len;
}
SERVER_END_REQ;
if (ret == STATUS_BUFFER_TOO_SMALL) ret = STATUS_INFO_LENGTH_MISMATCH;
if (!ret && name_len + sizeof(WCHAR) > str->MaximumLength) ret = STATUS_INFO_LENGTH_MISMATCH;
if (!ret || ret == STATUS_INFO_LENGTH_MISMATCH) str->MaximumLength = name_len + sizeof(WCHAR);
if (!ret)
{
str->Length = name_len;
memcpy( str->Buffer, buffer, str->Length );
str->Buffer[str->Length / sizeof(WCHAR)] = 0;
}
free( buffer );
return ret;
}
case SystemDynamicTimeZoneInformation: /* 102 */
{
RTL_DYNAMIC_TIME_ZONE_INFORMATION tz;
get_timezone_info( &tz );
len = sizeof(tz);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &tz, len);
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemCodeIntegrityInformation: /* 103 */
{
SYSTEM_CODEINTEGRITY_INFORMATION *integrity_info = info;
FIXME("SystemCodeIntegrityInformation, size %u, info %p, stub!\n", size, info);
len = sizeof(SYSTEM_CODEINTEGRITY_INFORMATION);
if (size >= len)
integrity_info->CodeIntegrityOptions = CODEINTEGRITY_OPTION_ENABLED;
else
ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemProcessorBrandString: /* 105 */
if (!cpu_name[0]) return STATUS_NOT_SUPPORTED;
if ((ULONG_PTR)info & 3) return STATUS_DATATYPE_MISALIGNMENT;
len = sizeof(cpu_name);
if (size >= len)
memcpy( info, cpu_name, len );
else
ret = STATUS_INFO_LENGTH_MISMATCH;
break;
case SystemKernelDebuggerInformationEx: /* 149 */
{
SYSTEM_KERNEL_DEBUGGER_INFORMATION_EX skdi;
skdi.DebuggerAllowed = FALSE;
skdi.DebuggerEnabled = FALSE;
skdi.DebuggerPresent = FALSE;
len = sizeof(skdi);
if (size >= len)
{
if (!info) ret = STATUS_ACCESS_VIOLATION;
else memcpy( info, &skdi, len );
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemProcessorFeaturesInformation: /* 154 */
len = sizeof(SYSTEM_PROCESSOR_FEATURES_INFORMATION);
if (size >= len)
{
SYSTEM_PROCESSOR_FEATURES_INFORMATION features = { .ProcessorFeatureBits = get_cpu_features() };
memcpy( info, &features, len );
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
case SystemCpuSetInformation: /* 175 */
return NtQuerySystemInformationEx(class, NULL, 0, info, size, ret_size);
case SystemLeapSecondInformation: /* 206 */
{
SYSTEM_LEAP_SECOND_INFORMATION *leap = info;
len = sizeof(*leap);
if (size >= len)
{
FIXME( "SystemLeapSecondInformation - stub\n" );
leap->Enabled = TRUE;
leap->Flags = 0;
}
else ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
/* Wine extensions */
case SystemWineVersionInformation: /* 1000 */
{
static const char version[] = PACKAGE_VERSION;
struct utsname buf;
uname( &buf );
snprintf( info, size, "%s%c%s%c%s%c%s", version, 0, wine_build, 0, buf.sysname, 0, buf.release );
len = strlen(version) + strlen(wine_build) + strlen(buf.sysname) + strlen(buf.release) + 4;
if (size < len) ret = STATUS_INFO_LENGTH_MISMATCH;
break;
}
default:
FIXME( "(0x%08x,%p,0x%08x,%p) stub\n", class, info, size, ret_size );
/* Several Information Classes are not implemented on Windows and return 2 different values
* STATUS_NOT_IMPLEMENTED or STATUS_INVALID_INFO_CLASS
* in 95% of the cases it's STATUS_INVALID_INFO_CLASS, so use this as the default
*/
ret = STATUS_INVALID_INFO_CLASS;
}
if (ret_size) *ret_size = len;
return ret;
}
/******************************************************************************
* NtQuerySystemInformationEx (NTDLL.@)
*/
NTSTATUS WINAPI NtQuerySystemInformationEx( SYSTEM_INFORMATION_CLASS class,
void *query, ULONG query_len,
void *info, ULONG size, ULONG *ret_size )
{
ULONG len = 0;
unsigned int ret = STATUS_NOT_IMPLEMENTED;
TRACE( "(0x%08x,%p,%u,%p,%u,%p) stub\n", class, query, query_len, info, size, ret_size );
pthread_once( &logical_proc_init_once, init_logical_proc_info );
switch (class)
{
case SystemProcessorIdleCycleTimeInformation:
len = peb->NumberOfProcessors * sizeof(ULONG64);
if (!query || query_len < sizeof(USHORT) || *(USHORT *)query) return STATUS_INVALID_PARAMETER;
if (size < len)
{
ret = STATUS_BUFFER_TOO_SMALL;
break;
}
get_cpu_idle_cycle_times( info );
ret = STATUS_SUCCESS;
break;
case SystemLogicalProcessorInformationEx:
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *p;
DWORD relation;
if (!query || query_len < sizeof(DWORD))
{
ret = STATUS_INVALID_PARAMETER;
break;
}
if (!logical_proc_info_ex)
{
ret = STATUS_NOT_IMPLEMENTED;
break;
}
relation = *(DWORD *)query;
len = 0;
p = logical_proc_info_ex;
while ((char *)p != (char *)logical_proc_info_ex + logical_proc_info_ex_size)
{
if (relation == RelationAll || p->Relationship == relation)
{
if (len + p->Size <= size)
memcpy( (char *)info + len, p, p->Size );
len += p->Size;
}
p = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((char *)p + p->Size);
}
ret = size >= len ? STATUS_SUCCESS : STATUS_INFO_LENGTH_MISMATCH;
break;
}
case SystemCpuSetInformation:
{
unsigned int cpu_count = peb->NumberOfProcessors;
PROCESS_BASIC_INFORMATION pbi;
HANDLE process;
if (!query || query_len < sizeof(HANDLE))
return STATUS_INVALID_PARAMETER;
process = *(HANDLE *)query;
if (process && (ret = NtQueryInformationProcess(process, ProcessBasicInformation, &pbi, sizeof(pbi), NULL)))
return ret;
if (size < (len = cpu_count * sizeof(SYSTEM_CPU_SET_INFORMATION)))
{
ret = STATUS_BUFFER_TOO_SMALL;
break;
}
if (!info)
return STATUS_ACCESS_VIOLATION;
if ((ret = create_cpuset_info(info)))
return ret;
break;
}
case SystemSupportedProcessorArchitectures:
{
SYSTEM_SUPPORTED_PROCESSOR_ARCHITECTURES_INFORMATION *machines = info;
HANDLE process;
ULONG i;
USHORT machine = 0;
if (!query || query_len < sizeof(HANDLE)) return STATUS_INVALID_PARAMETER;
process = *(HANDLE *)query;
if (process)
{
SERVER_START_REQ( get_process_info )
{
req->handle = wine_server_obj_handle( process );
if (!(ret = wine_server_call( req ))) machine = reply->machine;
}
SERVER_END_REQ;
if (ret) return ret;
}
len = (supported_machines_count + 1) * sizeof(*machines);
if (size < len)
{
ret = STATUS_BUFFER_TOO_SMALL;
break;
}
memset( machines, 0, len );
/* native machine */
machines[0].Machine = supported_machines[0];
machines[0].UserMode = 1;
machines[0].KernelMode = 1;
machines[0].Native = 1;
machines[0].Process = (supported_machines[0] == machine || is_machine_64bit( machine ));
machines[0].WoW64Container = 0;
machines[0].ReservedZero0 = 0;
/* wow64 machines */
for (i = 1; i < supported_machines_count; i++)
{
machines[i].Machine = supported_machines[i];
machines[i].UserMode = 1;
machines[i].Process = supported_machines[i] == machine;
machines[i].WoW64Container = 1;
}
ret = STATUS_SUCCESS;
break;
}
default:
FIXME( "(0x%08x,%p,%u,%p,%u,%p) stub\n", class, query, query_len, info, size, ret_size );
break;
}
if (ret_size) *ret_size = len;
return ret;
}
/******************************************************************************
* NtSetSystemInformation (NTDLL.@)
*/
NTSTATUS WINAPI NtSetSystemInformation( SYSTEM_INFORMATION_CLASS class, void *info, ULONG length )
{
FIXME( "(0x%08x,%p,0x%08x) stub\n", class, info, length );
return STATUS_SUCCESS;
}
/******************************************************************************
* NtQuerySystemEnvironmentValue (NTDLL.@)
*/
NTSTATUS WINAPI NtQuerySystemEnvironmentValue( UNICODE_STRING *name, WCHAR *buffer, ULONG length,
ULONG *retlen )
{
FIXME( "(%s, %p, %u, %p), stub\n", debugstr_us(name), buffer, length, retlen );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtQuerySystemEnvironmentValueEx (NTDLL.@)
*/
NTSTATUS WINAPI NtQuerySystemEnvironmentValueEx( UNICODE_STRING *name, GUID *vendor, void *buffer,
ULONG *retlen, ULONG *attrib )
{
FIXME( "(%s, %s, %p, %p, %p), stub\n", debugstr_us(name),
debugstr_guid(vendor), buffer, retlen, attrib );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtSystemDebugControl (NTDLL.@)
*/
NTSTATUS WINAPI NtSystemDebugControl( SYSDBG_COMMAND command, void *in_buff, ULONG in_len,
void *out_buff, ULONG out_len, ULONG *retlen )
{
FIXME( "(%d, %p, %d, %p, %d, %p), stub\n",
command, in_buff, in_len, out_buff, out_len, retlen );
return STATUS_DEBUGGER_INACTIVE;
}
/******************************************************************************
* NtShutdownSystem (NTDLL.@)
*/
NTSTATUS WINAPI NtShutdownSystem( SHUTDOWN_ACTION action )
{
FIXME( "%d\n", action );
return STATUS_SUCCESS;
}
#ifdef linux
/* Fallback using /proc/cpuinfo for Linux systems without cpufreq. For
* most distributions on recent enough hardware, this is only likely to
* happen while running in virtualized environments such as QEMU. */
static ULONG mhz_from_cpuinfo(void)
{
char line[512];
char *s, *value;
double cmz = 0;
FILE *f = fopen("/proc/cpuinfo", "r");
if(f)
{
while (fgets(line, sizeof(line), f) != NULL)
{
if (!(value = strchr(line,':'))) continue;
s = value - 1;
while ((s >= line) && (*s == ' ' || *s == '\t')) s--;
s[1] = 0;
value++;
if (!strcmp( line, "cpu MHz" ))
{
sscanf(value, " %lf", &cmz);
break;
}
}
fclose( f );
}
return cmz;
}
static const char * get_sys_str(const char *dirname, const char *basename, char *s)
{
char path[64];
FILE *f;
const char *ret = NULL;
if (snprintf(path, sizeof(path), "%s/%s", dirname, basename) >= sizeof(path)) return NULL;
if ((f = fopen(path, "r")))
{
if (fgets(s, 16, f)) ret = s;
fclose(f);
}
return ret;
}
static int get_sys_int(const char *dirname, const char *basename)
{
char s[16];
return get_sys_str(dirname, basename, s) ? atoi(s) : 0;
}
static NTSTATUS fill_battery_state( SYSTEM_BATTERY_STATE *bs )
{
DIR *d = opendir("/sys/class/power_supply");
struct dirent *de;
char s[16], path[64];
BOOL found_ac = FALSE;
LONG64 voltage; /* microvolts */
bs->AcOnLine = TRUE;
if (!d) return STATUS_SUCCESS;
while ((de = readdir(d)))
{
if (strcmp(de->d_name, ".") == 0 || strcmp(de->d_name, "..") == 0) continue;
if (snprintf(path, sizeof(path), "/sys/class/power_supply/%s", de->d_name) >= sizeof(path)) continue;
if (get_sys_str(path, "scope", s) && strcmp(s, "Device\n") == 0) continue;
if (!get_sys_str(path, "type", s)) continue;
if (strcmp(s, "Mains\n") == 0)
{
if (!get_sys_str(path, "online", s)) continue;
if (found_ac)
{
FIXME("Multiple mains found, only reporting on the first\n");
}
else
{
bs->AcOnLine = atoi(s);
found_ac = TRUE;
}
}
else if (strcmp(s, "Battery\n") == 0)
{
if (!get_sys_str(path, "status", s)) continue;
if (bs->BatteryPresent)
{
FIXME("Multiple batteries found, only reporting on the first\n");
}
else
{
bs->Charging = (strcmp(s, "Charging\n") == 0);
bs->Discharging = (strcmp(s, "Discharging\n") == 0);
bs->BatteryPresent = TRUE;
voltage = get_sys_int(path, "voltage_now");
bs->MaxCapacity = get_sys_int(path, "charge_full") * voltage / 1e9;
bs->RemainingCapacity = get_sys_int(path, "charge_now") * voltage / 1e9;
bs->Rate = -get_sys_int(path, "current_now") * voltage / 1e9;
if (!bs->Charging && (LONG)bs->Rate < 0)
bs->EstimatedTime = 3600 * bs->RemainingCapacity / -(LONG)bs->Rate;
else
bs->EstimatedTime = ~0u;
}
}
}
closedir(d);
return STATUS_SUCCESS;
}
#elif defined(__APPLE__)
static NTSTATUS fill_battery_state( SYSTEM_BATTERY_STATE *bs )
{
CFTypeRef blob = IOPSCopyPowerSourcesInfo();
CFArrayRef sources = IOPSCopyPowerSourcesList( blob );
CFIndex count, i;
CFDictionaryRef source = NULL;
CFTypeRef prop;
Boolean is_charging, is_internal, is_present;
int32_t value, voltage;
if (!sources)
{
if (blob) CFRelease( blob );
return STATUS_ACCESS_DENIED;
}
count = CFArrayGetCount( sources );
for (i = 0; i < count; i++)
{
source = IOPSGetPowerSourceDescription( blob, CFArrayGetValueAtIndex( sources, i ) );
if (!source)
continue;
prop = CFDictionaryGetValue( source, CFSTR(kIOPSTransportTypeKey) );
is_internal = !CFStringCompare( prop, CFSTR(kIOPSInternalType), 0 );
prop = CFDictionaryGetValue( source, CFSTR(kIOPSIsPresentKey) );
is_present = CFBooleanGetValue( prop );
if (is_internal && is_present)
break;
}
CFRelease( blob );
if (!source)
{
/* Just assume we're on AC with no internal power source. */
bs->AcOnLine = TRUE;
CFRelease( sources );
return STATUS_SUCCESS;
}
bs->BatteryPresent = TRUE;
prop = CFDictionaryGetValue( source, CFSTR(kIOPSIsChargingKey) );
is_charging = CFBooleanGetValue( prop );
prop = CFDictionaryGetValue( source, CFSTR(kIOPSPowerSourceStateKey) );
if (!CFStringCompare( prop, CFSTR(kIOPSACPowerValue), 0 ))
{
bs->AcOnLine = TRUE;
if (is_charging)
bs->Charging = TRUE;
}
else
bs->Discharging = TRUE;
/* We'll need the voltage to be able to interpret the other values. */
prop = CFDictionaryGetValue( source, CFSTR(kIOPSVoltageKey) );
if (prop)
CFNumberGetValue( prop, kCFNumberIntType, &voltage );
else
/* kIOPSVoltageKey is optional and might not be populated.
* Assume 11.4 V then, which is a common value for Apple laptops. */
voltage = 11400;
prop = CFDictionaryGetValue( source, CFSTR(kIOPSMaxCapacityKey) );
CFNumberGetValue( prop, kCFNumberIntType, &value );
bs->MaxCapacity = value * voltage;
/* Apple uses "estimated time < 10:00" and "22%" for these, but we'll follow
* Windows for now (5% and 33%). */
bs->DefaultAlert1 = bs->MaxCapacity / 20;
bs->DefaultAlert2 = bs->MaxCapacity / 3;
prop = CFDictionaryGetValue( source, CFSTR(kIOPSCurrentCapacityKey) );
CFNumberGetValue( prop, kCFNumberIntType, &value );
bs->RemainingCapacity = value * voltage;
prop = CFDictionaryGetValue( source, CFSTR(kIOPSCurrentKey) );
if (prop)
CFNumberGetValue( prop, kCFNumberIntType, &value );
else
/* kIOPSCurrentKey is optional and might not be populated. */
value = 0;
bs->Rate = value * voltage / 1000;
prop = CFDictionaryGetValue( source, CFSTR(kIOPSTimeToEmptyKey) );
if (prop)
{
CFNumberGetValue( prop, kCFNumberIntType, &value );
if (value > 0)
/* A value of -1 indicates "Still Calculating the Time",
* otherwise estimated minutes left on the battery. */
bs->EstimatedTime = value * 60;
}
CFRelease( sources );
return STATUS_SUCCESS;
}
#elif defined(__FreeBSD__)
#include <dev/acpica/acpiio.h>
static NTSTATUS fill_battery_state( SYSTEM_BATTERY_STATE *bs )
{
size_t len;
int state = 0;
int rate_mW = 0;
int time_mins = -1;
int life_percent = 0;
bs->BatteryPresent = TRUE;
len = sizeof(state);
bs->BatteryPresent &= !sysctlbyname("hw.acpi.battery.state", &state, &len, NULL, 0);
len = sizeof(rate_mW);
bs->BatteryPresent &= !sysctlbyname("hw.acpi.battery.rate", &rate_mW, &len, NULL, 0);
len = sizeof(time_mins);
bs->BatteryPresent &= !sysctlbyname("hw.acpi.battery.time", &time_mins, &len, NULL, 0);
len = sizeof(life_percent);
bs->BatteryPresent &= !sysctlbyname("hw.acpi.battery.life", &life_percent, &len, NULL, 0);
if (bs->BatteryPresent)
{
bs->AcOnLine = (time_mins == -1);
bs->Charging = state & ACPI_BATT_STAT_CHARGING;
bs->Discharging = state & ACPI_BATT_STAT_DISCHARG;
bs->Rate = (rate_mW >= 0 ? -rate_mW : 0);
if (time_mins >= 0 && life_percent > 0)
{
bs->EstimatedTime = 60 * time_mins;
bs->RemainingCapacity = bs->EstimatedTime * rate_mW / 3600;
bs->MaxCapacity = bs->RemainingCapacity * 100 / life_percent;
}
else
{
bs->EstimatedTime = ~0u;
bs->RemainingCapacity = life_percent;
bs->MaxCapacity = 100;
}
}
return STATUS_SUCCESS;
}
#else
static NTSTATUS fill_battery_state( SYSTEM_BATTERY_STATE *bs )
{
FIXME("SystemBatteryState not implemented on this platform\n");
return STATUS_NOT_IMPLEMENTED;
}
#endif
/******************************************************************************
* NtPowerInformation (NTDLL.@)
*/
NTSTATUS WINAPI NtPowerInformation( POWER_INFORMATION_LEVEL level, void *input, ULONG in_size,
void *output, ULONG out_size )
{
TRACE( "(%d,%p,%d,%p,%d)\n", level, input, in_size, output, out_size );
switch (level)
{
case SystemPowerCapabilities:
{
PSYSTEM_POWER_CAPABILITIES PowerCaps = output;
FIXME("semi-stub: SystemPowerCapabilities\n");
if (out_size < sizeof(SYSTEM_POWER_CAPABILITIES)) return STATUS_BUFFER_TOO_SMALL;
/* FIXME: These values are based off a native XP desktop, should probably use APM/ACPI to get the 'real' values */
PowerCaps->PowerButtonPresent = TRUE;
PowerCaps->SleepButtonPresent = FALSE;
PowerCaps->LidPresent = FALSE;
PowerCaps->SystemS1 = TRUE;
PowerCaps->SystemS2 = FALSE;
PowerCaps->SystemS3 = FALSE;
PowerCaps->SystemS4 = TRUE;
PowerCaps->SystemS5 = TRUE;
PowerCaps->HiberFilePresent = TRUE;
PowerCaps->FullWake = TRUE;
PowerCaps->VideoDimPresent = FALSE;
PowerCaps->ApmPresent = FALSE;
PowerCaps->UpsPresent = FALSE;
PowerCaps->ThermalControl = FALSE;
PowerCaps->ProcessorThrottle = FALSE;
PowerCaps->ProcessorMinThrottle = 100;
PowerCaps->ProcessorMaxThrottle = 100;
PowerCaps->DiskSpinDown = TRUE;
PowerCaps->SystemBatteriesPresent = FALSE;
PowerCaps->BatteriesAreShortTerm = FALSE;
PowerCaps->BatteryScale[0].Granularity = 0;
PowerCaps->BatteryScale[0].Capacity = 0;
PowerCaps->BatteryScale[1].Granularity = 0;
PowerCaps->BatteryScale[1].Capacity = 0;
PowerCaps->BatteryScale[2].Granularity = 0;
PowerCaps->BatteryScale[2].Capacity = 0;
PowerCaps->AcOnLineWake = PowerSystemUnspecified;
PowerCaps->SoftLidWake = PowerSystemUnspecified;
PowerCaps->RtcWake = PowerSystemSleeping1;
PowerCaps->MinDeviceWakeState = PowerSystemUnspecified;
PowerCaps->DefaultLowLatencyWake = PowerSystemUnspecified;
return STATUS_SUCCESS;
}
case SystemBatteryState:
{
if (out_size < sizeof(SYSTEM_BATTERY_STATE)) return STATUS_BUFFER_TOO_SMALL;
memset(output, 0, sizeof(SYSTEM_BATTERY_STATE));
return fill_battery_state(output);
}
case SystemExecutionState:
{
ULONG *state = output;
WARN("semi-stub: SystemExecutionState\n"); /* Needed for .NET Framework, but using a FIXME is really noisy. */
if (input != NULL) return STATUS_INVALID_PARAMETER;
/* FIXME: The actual state should be the value set by SetThreadExecutionState which is not currently implemented. */
*state = ES_USER_PRESENT;
return STATUS_SUCCESS;
}
case ProcessorInformation:
{
const int cannedMHz = 1000; /* We fake a 1GHz processor if we can't conjure up real values */
PROCESSOR_POWER_INFORMATION* cpu_power = output;
int i, out_cpus;
if ((output == NULL) || (out_size == 0)) return STATUS_INVALID_PARAMETER;
out_cpus = peb->NumberOfProcessors;
if ((out_size / sizeof(PROCESSOR_POWER_INFORMATION)) < out_cpus) return STATUS_BUFFER_TOO_SMALL;
#if defined(linux)
{
unsigned int val;
char filename[128];
FILE* f;
for(i = 0; i < out_cpus; i++) {
snprintf(filename, sizeof(filename), "/sys/devices/system/cpu/cpu%d/cpufreq/cpuinfo_max_freq", i);
f = fopen(filename, "r");
if (f && (fscanf(f, "%u", &val) == 1)) {
cpu_power[i].MaxMhz = val / 1000;
fclose(f);
cpu_power[i].CurrentMhz = cpu_power[i].MaxMhz;
}
else {
if(i == 0) {
cpu_power[0].CurrentMhz = mhz_from_cpuinfo();
if(cpu_power[0].CurrentMhz == 0)
cpu_power[0].CurrentMhz = cannedMHz;
}
else
cpu_power[i].CurrentMhz = cpu_power[0].CurrentMhz;
cpu_power[i].MaxMhz = cpu_power[i].CurrentMhz;
if(f) fclose(f);
}
snprintf(filename, sizeof(filename), "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_max_freq", i);
f = fopen(filename, "r");
if(f && (fscanf(f, "%u", &val) == 1)) {
cpu_power[i].MhzLimit = val / 1000;
fclose(f);
}
else
{
cpu_power[i].MhzLimit = cpu_power[i].MaxMhz;
if(f) fclose(f);
}
cpu_power[i].Number = i;
cpu_power[i].MaxIdleState = 0; /* FIXME */
cpu_power[i].CurrentIdleState = 0; /* FIXME */
}
}
#elif defined(__FreeBSD__) || defined (__FreeBSD_kernel__) || defined(__DragonFly__)
{
int num;
size_t valSize = sizeof(num);
if (sysctlbyname("hw.clockrate", &num, &valSize, NULL, 0))
num = cannedMHz;
for(i = 0; i < out_cpus; i++) {
cpu_power[i].CurrentMhz = num;
cpu_power[i].MaxMhz = num;
cpu_power[i].MhzLimit = num;
cpu_power[i].Number = i;
cpu_power[i].MaxIdleState = 0; /* FIXME */
cpu_power[i].CurrentIdleState = 0; /* FIXME */
}
}
#elif defined (__APPLE__)
{
size_t valSize;
unsigned long long currentMhz;
unsigned long long maxMhz;
valSize = sizeof(currentMhz);
if (!sysctlbyname("hw.cpufrequency", &currentMhz, &valSize, NULL, 0))
currentMhz /= 1000000;
else
currentMhz = cannedMHz;
valSize = sizeof(maxMhz);
if (!sysctlbyname("hw.cpufrequency_max", &maxMhz, &valSize, NULL, 0))
maxMhz /= 1000000;
else
maxMhz = currentMhz;
for(i = 0; i < out_cpus; i++) {
cpu_power[i].CurrentMhz = currentMhz;
cpu_power[i].MaxMhz = maxMhz;
cpu_power[i].MhzLimit = maxMhz;
cpu_power[i].Number = i;
cpu_power[i].MaxIdleState = 0; /* FIXME */
cpu_power[i].CurrentIdleState = 0; /* FIXME */
}
}
#else
for(i = 0; i < out_cpus; i++) {
cpu_power[i].CurrentMhz = cannedMHz;
cpu_power[i].MaxMhz = cannedMHz;
cpu_power[i].MhzLimit = cannedMHz;
cpu_power[i].Number = i;
cpu_power[i].MaxIdleState = 0; /* FIXME */
cpu_power[i].CurrentIdleState = 0; /* FIXME */
}
WARN("Unable to detect CPU MHz for this platform. Reporting %d MHz.\n", cannedMHz);
#endif
for(i = 0; i < out_cpus; i++) {
TRACE("cpu_power[%d] = %u %u %u %u %u %u\n", i, cpu_power[i].Number,
cpu_power[i].MaxMhz, cpu_power[i].CurrentMhz, cpu_power[i].MhzLimit,
cpu_power[i].MaxIdleState, cpu_power[i].CurrentIdleState);
}
return STATUS_SUCCESS;
}
default:
/* FIXME: Needed by .NET Framework */
WARN( "Unimplemented NtPowerInformation action: %d\n", level );
return STATUS_NOT_IMPLEMENTED;
}
}
/******************************************************************************
* NtLoadDriver (NTDLL.@)
*/
NTSTATUS WINAPI NtLoadDriver( const UNICODE_STRING *name )
{
FIXME( "(%s), stub!\n", debugstr_us(name) );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtUnloadDriver (NTDLL.@)
*/
NTSTATUS WINAPI NtUnloadDriver( const UNICODE_STRING *name )
{
FIXME( "(%s), stub!\n", debugstr_us(name) );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtDisplayString (NTDLL.@)
*/
NTSTATUS WINAPI NtDisplayString( UNICODE_STRING *string )
{
ERR( "%s\n", debugstr_us(string) );
return STATUS_SUCCESS;
}
/******************************************************************************
* NtRaiseHardError (NTDLL.@)
*/
NTSTATUS WINAPI NtRaiseHardError( NTSTATUS status, ULONG count,
ULONG params_mask, void **params,
HARDERROR_RESPONSE_OPTION option, HARDERROR_RESPONSE *response )
{
FIXME( "%#08x %u %#x %p %u %p: stub\n", status, count, params_mask, params, option, response );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtInitiatePowerAction (NTDLL.@)
*/
NTSTATUS WINAPI NtInitiatePowerAction( POWER_ACTION action, SYSTEM_POWER_STATE state,
ULONG flags, BOOLEAN async )
{
FIXME( "(%d,%d,0x%08x,%d),stub\n", action, state, flags, async );
return STATUS_NOT_IMPLEMENTED;
}
/******************************************************************************
* NtSetThreadExecutionState (NTDLL.@)
*/
NTSTATUS WINAPI NtSetThreadExecutionState( EXECUTION_STATE new_state, EXECUTION_STATE *old_state )
{
static EXECUTION_STATE current = ES_SYSTEM_REQUIRED | ES_DISPLAY_REQUIRED | ES_USER_PRESENT;
WARN( "(0x%x, %p): stub, harmless.\n", new_state, old_state );
*old_state = current;
if (!(current & ES_CONTINUOUS) || (new_state & ES_CONTINUOUS)) current = new_state;
return STATUS_SUCCESS;
}