mirror of
https://github.com/vim/vim
synced 2025-03-25 11:15:10 +01:00
Problem: Missing parenthesis may cause unexpected problems. Solution: Add more parenthesis is macros. (closes #9788)
427 lines
12 KiB
C
427 lines
12 KiB
C
/* vi:set ts=8 sts=4 sw=4 noet:
|
|
*
|
|
* VIM - Vi IMproved by Bram Moolenaar
|
|
*
|
|
* Do ":help uganda" in Vim to read copying and usage conditions.
|
|
* Do ":help credits" in Vim to see a list of people who contributed.
|
|
* See README.txt for an overview of the Vim source code.
|
|
*
|
|
* FIPS-180-2 compliant SHA-256 implementation
|
|
* GPL by Christophe Devine, applies to older version.
|
|
* Modified for md5deep, in public domain.
|
|
* Modified For Vim, Mohsin Ahmed, http://www.cs.albany.edu/~mosh
|
|
* Mohsin Ahmed states this work is distributed under the VIM License or GPL,
|
|
* at your choice.
|
|
*
|
|
* Vim specific notes:
|
|
* Functions exported by this file:
|
|
* 1. sha256_key() hashes the password to 64 bytes char string.
|
|
* 2. sha2_seed() generates a random header.
|
|
* sha256_self_test() is implicitly called once.
|
|
*/
|
|
|
|
#include "vim.h"
|
|
|
|
#if defined(FEAT_CRYPT) || defined(FEAT_PERSISTENT_UNDO)
|
|
|
|
#define GET_UINT32(n, b, i) \
|
|
{ \
|
|
(n) = ( (UINT32_T)(b)[(i) ] << 24) \
|
|
| ( (UINT32_T)(b)[(i) + 1] << 16) \
|
|
| ( (UINT32_T)(b)[(i) + 2] << 8) \
|
|
| ( (UINT32_T)(b)[(i) + 3] ); \
|
|
}
|
|
|
|
#define PUT_UINT32(n,b,i) \
|
|
{ \
|
|
(b)[(i) ] = (char_u)((n) >> 24); \
|
|
(b)[(i) + 1] = (char_u)((n) >> 16); \
|
|
(b)[(i) + 2] = (char_u)((n) >> 8); \
|
|
(b)[(i) + 3] = (char_u)((n) ); \
|
|
}
|
|
|
|
void
|
|
sha256_start(context_sha256_T *ctx)
|
|
{
|
|
ctx->total[0] = 0;
|
|
ctx->total[1] = 0;
|
|
|
|
ctx->state[0] = 0x6A09E667;
|
|
ctx->state[1] = 0xBB67AE85;
|
|
ctx->state[2] = 0x3C6EF372;
|
|
ctx->state[3] = 0xA54FF53A;
|
|
ctx->state[4] = 0x510E527F;
|
|
ctx->state[5] = 0x9B05688C;
|
|
ctx->state[6] = 0x1F83D9AB;
|
|
ctx->state[7] = 0x5BE0CD19;
|
|
}
|
|
|
|
static void
|
|
sha256_process(context_sha256_T *ctx, char_u data[64])
|
|
{
|
|
UINT32_T temp1, temp2, W[64];
|
|
UINT32_T A, B, C, D, E, F, G, H;
|
|
|
|
GET_UINT32(W[0], data, 0);
|
|
GET_UINT32(W[1], data, 4);
|
|
GET_UINT32(W[2], data, 8);
|
|
GET_UINT32(W[3], data, 12);
|
|
GET_UINT32(W[4], data, 16);
|
|
GET_UINT32(W[5], data, 20);
|
|
GET_UINT32(W[6], data, 24);
|
|
GET_UINT32(W[7], data, 28);
|
|
GET_UINT32(W[8], data, 32);
|
|
GET_UINT32(W[9], data, 36);
|
|
GET_UINT32(W[10], data, 40);
|
|
GET_UINT32(W[11], data, 44);
|
|
GET_UINT32(W[12], data, 48);
|
|
GET_UINT32(W[13], data, 52);
|
|
GET_UINT32(W[14], data, 56);
|
|
GET_UINT32(W[15], data, 60);
|
|
|
|
#define SHR(x, n) (((x) & 0xFFFFFFFF) >> (n))
|
|
#define ROTR(x, n) (SHR(x, n) | ((x) << (32 - (n))))
|
|
|
|
#define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
|
|
#define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
|
|
|
|
#define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
|
#define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
|
|
|
#define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
|
|
#define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
|
|
|
|
#define R(t) \
|
|
( \
|
|
W[t] = S1(W[(t) - 2]) + W[(t) - 7] + \
|
|
S0(W[(t) - 15]) + W[(t) - 16] \
|
|
)
|
|
|
|
#define P(a,b,c,d,e,f,g,h,x,K) \
|
|
{ \
|
|
temp1 = (h) + S3(e) + F1(e, f, g) + (K) + (x); \
|
|
temp2 = S2(a) + F0(a, b, c); \
|
|
(d) += temp1; (h) = temp1 + temp2; \
|
|
}
|
|
|
|
A = ctx->state[0];
|
|
B = ctx->state[1];
|
|
C = ctx->state[2];
|
|
D = ctx->state[3];
|
|
E = ctx->state[4];
|
|
F = ctx->state[5];
|
|
G = ctx->state[6];
|
|
H = ctx->state[7];
|
|
|
|
P( A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98);
|
|
P( H, A, B, C, D, E, F, G, W[ 1], 0x71374491);
|
|
P( G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF);
|
|
P( F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5);
|
|
P( E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B);
|
|
P( D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1);
|
|
P( C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4);
|
|
P( B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5);
|
|
P( A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98);
|
|
P( H, A, B, C, D, E, F, G, W[ 9], 0x12835B01);
|
|
P( G, H, A, B, C, D, E, F, W[10], 0x243185BE);
|
|
P( F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
|
|
P( E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
|
|
P( D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
|
|
P( C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
|
|
P( B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
|
|
P( A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
|
|
P( H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
|
|
P( G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
|
|
P( F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
|
|
P( E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
|
|
P( D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
|
|
P( C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
|
|
P( B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
|
|
P( A, B, C, D, E, F, G, H, R(24), 0x983E5152);
|
|
P( H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
|
|
P( G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
|
|
P( F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
|
|
P( E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
|
|
P( D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
|
|
P( C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
|
|
P( B, C, D, E, F, G, H, A, R(31), 0x14292967);
|
|
P( A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
|
|
P( H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
|
|
P( G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
|
|
P( F, G, H, A, B, C, D, E, R(35), 0x53380D13);
|
|
P( E, F, G, H, A, B, C, D, R(36), 0x650A7354);
|
|
P( D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
|
|
P( C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
|
|
P( B, C, D, E, F, G, H, A, R(39), 0x92722C85);
|
|
P( A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
|
|
P( H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
|
|
P( G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
|
|
P( F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
|
|
P( E, F, G, H, A, B, C, D, R(44), 0xD192E819);
|
|
P( D, E, F, G, H, A, B, C, R(45), 0xD6990624);
|
|
P( C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
|
|
P( B, C, D, E, F, G, H, A, R(47), 0x106AA070);
|
|
P( A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
|
|
P( H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
|
|
P( G, H, A, B, C, D, E, F, R(50), 0x2748774C);
|
|
P( F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
|
|
P( E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
|
|
P( D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
|
|
P( C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
|
|
P( B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
|
|
P( A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
|
|
P( H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
|
|
P( G, H, A, B, C, D, E, F, R(58), 0x84C87814);
|
|
P( F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
|
|
P( E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
|
|
P( D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
|
|
P( C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
|
|
P( B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
|
|
|
|
ctx->state[0] += A;
|
|
ctx->state[1] += B;
|
|
ctx->state[2] += C;
|
|
ctx->state[3] += D;
|
|
ctx->state[4] += E;
|
|
ctx->state[5] += F;
|
|
ctx->state[6] += G;
|
|
ctx->state[7] += H;
|
|
}
|
|
|
|
void
|
|
sha256_update(context_sha256_T *ctx, char_u *input, UINT32_T length)
|
|
{
|
|
UINT32_T left, fill;
|
|
|
|
if (length == 0)
|
|
return;
|
|
|
|
left = ctx->total[0] & 0x3F;
|
|
fill = 64 - left;
|
|
|
|
ctx->total[0] += length;
|
|
ctx->total[0] &= 0xFFFFFFFF;
|
|
|
|
if (ctx->total[0] < length)
|
|
ctx->total[1]++;
|
|
|
|
if (left && length >= fill)
|
|
{
|
|
memcpy((void *)(ctx->buffer + left), (void *)input, fill);
|
|
sha256_process(ctx, ctx->buffer);
|
|
length -= fill;
|
|
input += fill;
|
|
left = 0;
|
|
}
|
|
|
|
while (length >= 64)
|
|
{
|
|
sha256_process(ctx, input);
|
|
length -= 64;
|
|
input += 64;
|
|
}
|
|
|
|
if (length)
|
|
memcpy((void *)(ctx->buffer + left), (void *)input, length);
|
|
}
|
|
|
|
static char_u sha256_padding[64] = {
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
void
|
|
sha256_finish(context_sha256_T *ctx, char_u digest[32])
|
|
{
|
|
UINT32_T last, padn;
|
|
UINT32_T high, low;
|
|
char_u msglen[8];
|
|
|
|
high = (ctx->total[0] >> 29) | (ctx->total[1] << 3);
|
|
low = (ctx->total[0] << 3);
|
|
|
|
PUT_UINT32(high, msglen, 0);
|
|
PUT_UINT32(low, msglen, 4);
|
|
|
|
last = ctx->total[0] & 0x3F;
|
|
padn = (last < 56) ? (56 - last) : (120 - last);
|
|
|
|
sha256_update(ctx, sha256_padding, padn);
|
|
sha256_update(ctx, msglen, 8);
|
|
|
|
PUT_UINT32(ctx->state[0], digest, 0);
|
|
PUT_UINT32(ctx->state[1], digest, 4);
|
|
PUT_UINT32(ctx->state[2], digest, 8);
|
|
PUT_UINT32(ctx->state[3], digest, 12);
|
|
PUT_UINT32(ctx->state[4], digest, 16);
|
|
PUT_UINT32(ctx->state[5], digest, 20);
|
|
PUT_UINT32(ctx->state[6], digest, 24);
|
|
PUT_UINT32(ctx->state[7], digest, 28);
|
|
}
|
|
#endif // FEAT_CRYPT || FEAT_PERSISTENT_UNDO
|
|
|
|
#if defined(FEAT_CRYPT) || defined(PROTO)
|
|
/*
|
|
* Returns hex digest of "buf[buf_len]" in a static array.
|
|
* if "salt" is not NULL also do "salt[salt_len]".
|
|
*/
|
|
char_u *
|
|
sha256_bytes(
|
|
char_u *buf,
|
|
int buf_len,
|
|
char_u *salt,
|
|
int salt_len)
|
|
{
|
|
char_u sha256sum[32];
|
|
static char_u hexit[65];
|
|
int j;
|
|
context_sha256_T ctx;
|
|
|
|
sha256_self_test();
|
|
|
|
sha256_start(&ctx);
|
|
sha256_update(&ctx, buf, buf_len);
|
|
if (salt != NULL)
|
|
sha256_update(&ctx, salt, salt_len);
|
|
sha256_finish(&ctx, sha256sum);
|
|
for (j = 0; j < 32; j++)
|
|
sprintf((char *)hexit + j * 2, "%02x", sha256sum[j]);
|
|
hexit[sizeof(hexit) - 1] = '\0';
|
|
return hexit;
|
|
}
|
|
|
|
/*
|
|
* Returns sha256(buf) as 64 hex chars in static array.
|
|
*/
|
|
char_u *
|
|
sha256_key(
|
|
char_u *buf,
|
|
char_u *salt,
|
|
int salt_len)
|
|
{
|
|
// No passwd means don't encrypt
|
|
if (buf == NULL || *buf == NUL)
|
|
return (char_u *)"";
|
|
|
|
return sha256_bytes(buf, (int)STRLEN(buf), salt, salt_len);
|
|
}
|
|
|
|
/*
|
|
* These are the standard FIPS-180-2 test vectors
|
|
*/
|
|
|
|
static char *sha_self_test_msg[] = {
|
|
"abc",
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
NULL
|
|
};
|
|
|
|
static char *sha_self_test_vector[] = {
|
|
"ba7816bf8f01cfea414140de5dae2223" \
|
|
"b00361a396177a9cb410ff61f20015ad",
|
|
"248d6a61d20638b8e5c026930c3e6039" \
|
|
"a33ce45964ff2167f6ecedd419db06c1",
|
|
"cdc76e5c9914fb9281a1c7e284d73e67" \
|
|
"f1809a48a497200e046d39ccc7112cd0"
|
|
};
|
|
|
|
/*
|
|
* Perform a test on the SHA256 algorithm.
|
|
* Return FAIL or OK.
|
|
*/
|
|
int
|
|
sha256_self_test(void)
|
|
{
|
|
int i, j;
|
|
char output[65];
|
|
context_sha256_T ctx;
|
|
char_u buf[1000];
|
|
char_u sha256sum[32];
|
|
static int failures = 0;
|
|
char_u *hexit;
|
|
static int sha256_self_tested = 0;
|
|
|
|
if (sha256_self_tested > 0)
|
|
return failures > 0 ? FAIL : OK;
|
|
sha256_self_tested = 1;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (i < 2)
|
|
{
|
|
hexit = sha256_bytes((char_u *)sha_self_test_msg[i],
|
|
(int)STRLEN(sha_self_test_msg[i]),
|
|
NULL, 0);
|
|
STRCPY(output, hexit);
|
|
}
|
|
else
|
|
{
|
|
sha256_start(&ctx);
|
|
vim_memset(buf, 'a', 1000);
|
|
for (j = 0; j < 1000; j++)
|
|
sha256_update(&ctx, (char_u *)buf, 1000);
|
|
sha256_finish(&ctx, sha256sum);
|
|
for (j = 0; j < 32; j++)
|
|
sprintf(output + j * 2, "%02x", sha256sum[j]);
|
|
}
|
|
if (memcmp(output, sha_self_test_vector[i], 64))
|
|
{
|
|
failures++;
|
|
output[sizeof(output) - 1] = '\0';
|
|
// printf("sha256_self_test %d failed %s\n", i, output);
|
|
}
|
|
}
|
|
return failures > 0 ? FAIL : OK;
|
|
}
|
|
|
|
static unsigned int
|
|
get_some_time(void)
|
|
{
|
|
# ifdef HAVE_GETTIMEOFDAY
|
|
struct timeval tv;
|
|
|
|
// Using usec makes it less predictable.
|
|
gettimeofday(&tv, NULL);
|
|
return (unsigned int)(tv.tv_sec + tv.tv_usec);
|
|
# else
|
|
return (unsigned int)time(NULL);
|
|
# endif
|
|
}
|
|
|
|
/*
|
|
* Fill "header[header_len]" with random_data.
|
|
* Also "salt[salt_len]" when "salt" is not NULL.
|
|
*/
|
|
void
|
|
sha2_seed(
|
|
char_u *header,
|
|
int header_len,
|
|
char_u *salt,
|
|
int salt_len)
|
|
{
|
|
int i;
|
|
static char_u random_data[1000];
|
|
char_u sha256sum[32];
|
|
context_sha256_T ctx;
|
|
|
|
srand(get_some_time());
|
|
|
|
for (i = 0; i < (int)sizeof(random_data) - 1; i++)
|
|
random_data[i] = (char_u)((get_some_time() ^ rand()) & 0xff);
|
|
sha256_start(&ctx);
|
|
sha256_update(&ctx, (char_u *)random_data, sizeof(random_data));
|
|
sha256_finish(&ctx, sha256sum);
|
|
|
|
// put first block into header.
|
|
for (i = 0; i < header_len; i++)
|
|
header[i] = sha256sum[i % sizeof(sha256sum)];
|
|
|
|
// put remaining block into salt.
|
|
if (salt != NULL)
|
|
for (i = 0; i < salt_len; i++)
|
|
salt[i] = sha256sum[(i + header_len) % sizeof(sha256sum)];
|
|
}
|
|
|
|
#endif // FEAT_CRYPT
|