vim/src/vim9instr.c
John Marriott b32800f7c5
patch 9.1.1063: too many strlen() calls in userfunc.c
Problem:  too many strlen() calls in userfunc.c
Solution: refactor userfunc.c and remove calls to strlen(),
          drop set_ufunc_name() and roll it into alloc_ufunc(),
          check for out-of-memory condition in trans_function_name_ext()
          (John Marriott)

closes: #16537

Signed-off-by: John Marriott <basilisk@internode.on.net>
Signed-off-by: Christian Brabandt <cb@256bit.org>
2025-02-01 15:25:34 +01:00

2840 lines
67 KiB
C

/* vi:set ts=8 sts=4 sw=4 noet:
*
* VIM - Vi IMproved by Bram Moolenaar
*
* Do ":help uganda" in Vim to read copying and usage conditions.
* Do ":help credits" in Vim to see a list of people who contributed.
* See README.txt for an overview of the Vim source code.
*/
/*
* vim9instr.c: Dealing with instructions of a compiled function
*/
#define USING_FLOAT_STUFF
#include "vim.h"
#if defined(FEAT_EVAL) || defined(PROTO)
// When not generating protos this is included in proto.h
#ifdef PROTO
# include "vim9.h"
#endif
/////////////////////////////////////////////////////////////////////
// Following generate_ functions expect the caller to call ga_grow().
#define RETURN_NULL_IF_SKIP(cctx) if (cctx->ctx_skip == SKIP_YES) return NULL
#define RETURN_OK_IF_SKIP(cctx) if (cctx->ctx_skip == SKIP_YES) return OK
/*
* Generate an instruction without arguments.
* Returns a pointer to the new instruction, NULL if failed.
*/
isn_T *
generate_instr(cctx_T *cctx, isntype_T isn_type)
{
garray_T *instr = &cctx->ctx_instr;
isn_T *isn;
RETURN_NULL_IF_SKIP(cctx);
if (GA_GROW_FAILS(instr, 1))
return NULL;
isn = ((isn_T *)instr->ga_data) + instr->ga_len;
isn->isn_type = isn_type;
isn->isn_lnum = cctx->ctx_lnum + 1;
++instr->ga_len;
return isn;
}
/*
* Generate an instruction without arguments.
* "drop" will be removed from the stack.
* Returns a pointer to the new instruction, NULL if failed.
*/
isn_T *
generate_instr_drop(cctx_T *cctx, isntype_T isn_type, int drop)
{
RETURN_NULL_IF_SKIP(cctx);
cctx->ctx_type_stack.ga_len -= drop;
return generate_instr(cctx, isn_type);
}
/*
* Generate instruction "isn_type" and put "type" on the type stack,
* use "decl_type" for the declared type.
*/
static isn_T *
generate_instr_type2(
cctx_T *cctx,
isntype_T isn_type,
type_T *type,
type_T *decl_type)
{
isn_T *isn;
if ((isn = generate_instr(cctx, isn_type)) == NULL)
return NULL;
if (push_type_stack2(cctx, type == NULL ? &t_any : type,
decl_type == NULL ? &t_any : decl_type) == FAIL)
return NULL;
return isn;
}
/*
* Generate instruction "isn_type" and put "type" on the type stack.
* Uses "any" for the declared type, which works for constants. For declared
* variables use generate_instr_type2().
*/
isn_T *
generate_instr_type(cctx_T *cctx, isntype_T isn_type, type_T *type)
{
return generate_instr_type2(cctx, isn_type, type, &t_any);
}
/*
* Generate an ISN_DEBUG instruction.
*/
isn_T *
generate_instr_debug(cctx_T *cctx)
{
isn_T *isn;
dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data)
+ cctx->ctx_ufunc->uf_dfunc_idx;
if ((isn = generate_instr(cctx, ISN_DEBUG)) == NULL)
return NULL;
isn->isn_arg.debug.dbg_var_names_len = dfunc->df_var_names.ga_len;
isn->isn_arg.debug.dbg_break_lnum = cctx->ctx_prev_lnum;
return isn;
}
/*
* Generate an ISN_CONSTRUCT instruction.
* The object will have "size" members.
*/
int
generate_CONSTRUCT(cctx_T *cctx, class_T *cl)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_CONSTRUCT)) == NULL)
return FAIL;
isn->isn_arg.construct.construct_size = sizeof(object_T)
+ cl->class_obj_member_count * sizeof(typval_T);
isn->isn_arg.construct.construct_class = cl;
return OK;
}
/*
* Generate ISN_GET_OBJ_MEMBER - access member of object at bottom of stack by
* index.
*/
int
generate_GET_OBJ_MEMBER(cctx_T *cctx, int idx, type_T *type)
{
RETURN_OK_IF_SKIP(cctx);
// drop the object type
isn_T *isn = generate_instr_drop(cctx, ISN_GET_OBJ_MEMBER, 1);
if (isn == NULL)
return FAIL;
isn->isn_arg.classmember.cm_class = NULL;
isn->isn_arg.classmember.cm_idx = idx;
return push_type_stack2(cctx, type, &t_any);
}
/*
* Generate ISN_GET_ITF_MEMBER - access member of interface at bottom of stack
* by index.
*/
int
generate_GET_ITF_MEMBER(cctx_T *cctx, class_T *itf, int idx, type_T *type)
{
RETURN_OK_IF_SKIP(cctx);
// drop the object type
isn_T *isn = generate_instr_drop(cctx, ISN_GET_ITF_MEMBER, 1);
if (isn == NULL)
return FAIL;
isn->isn_arg.classmember.cm_class = itf;
++itf->class_refcount;
isn->isn_arg.classmember.cm_idx = idx;
return push_type_stack2(cctx, type, &t_any);
}
/*
* Generate ISN_STORE_THIS - store value in member of "this" object with member
* index "idx".
*/
int
generate_STORE_THIS(cctx_T *cctx, int idx)
{
RETURN_OK_IF_SKIP(cctx);
// drop the value type
isn_T *isn = generate_instr_drop(cctx, ISN_STORE_THIS, 1);
if (isn == NULL)
return FAIL;
isn->isn_arg.number = idx;
return OK;
}
/*
* If type at "offset" isn't already VAR_STRING then generate ISN_2STRING.
* But only for simple types.
* When tostring_flags has TOSTRING_TOLERANT, convert a List to a series of
* strings. When tostring_flags has TOSTRING_INTERPOLATE, convert a List or a
* Dict to the corresponding textual representation.
*/
int
may_generate_2STRING(int offset, int tostring_flags, cctx_T *cctx)
{
isn_T *isn;
isntype_T isntype = ISN_2STRING;
type_T *type;
RETURN_OK_IF_SKIP(cctx);
type = get_type_on_stack(cctx, -1 - offset);
switch (type->tt_type)
{
// nothing to be done
case VAR_STRING: return OK;
// conversion possible
case VAR_SPECIAL:
case VAR_BOOL:
case VAR_NUMBER:
case VAR_FLOAT:
break;
// conversion possible (with runtime check)
case VAR_ANY:
case VAR_UNKNOWN:
isntype = ISN_2STRING_ANY;
break;
// conversion possible when tolerant
case VAR_LIST:
case VAR_DICT:
if (tostring_flags & TOSTRING_TOLERANT)
{
isntype = ISN_2STRING_ANY;
break;
}
if (tostring_flags & TOSTRING_INTERPOLATE)
break;
// FALLTHROUGH
// conversion not possible
case VAR_VOID:
case VAR_BLOB:
case VAR_FUNC:
case VAR_PARTIAL:
case VAR_JOB:
case VAR_CHANNEL:
case VAR_INSTR:
case VAR_CLASS:
case VAR_OBJECT:
case VAR_TYPEALIAS:
to_string_error(type->tt_type);
return FAIL;
}
set_type_on_stack(cctx, &t_string, -1 - offset);
if ((isn = generate_instr(cctx, isntype)) == NULL)
return FAIL;
isn->isn_arg.tostring.offset = offset;
isn->isn_arg.tostring.flags = tostring_flags;
return OK;
}
static int
check_number_or_float(type_T *typ1, type_T *typ2, char_u *op)
{
vartype_T type1 = typ1->tt_type;
vartype_T type2 = typ2->tt_type;
if (!((type1 == VAR_NUMBER || type1 == VAR_FLOAT
|| type1 == VAR_ANY || type1 == VAR_UNKNOWN)
&& (type2 == VAR_NUMBER || type2 == VAR_FLOAT
|| type2 == VAR_ANY || type2 == VAR_UNKNOWN)))
{
if (check_type_is_value(typ1) == FAIL
|| check_type_is_value(typ2) == FAIL)
return FAIL;
if (*op == '+')
emsg(_(e_wrong_argument_type_for_plus));
else
semsg(_(e_char_requires_number_or_float_arguments), *op);
return FAIL;
}
return OK;
}
/*
* Generate instruction for "+". For a list this creates a new list.
*/
int
generate_add_instr(
cctx_T *cctx,
vartype_T vartype,
type_T *type1,
type_T *type2,
exprtype_T expr_type)
{
isn_T *isn = generate_instr_drop(cctx,
vartype == VAR_NUMBER ? ISN_OPNR
: vartype == VAR_LIST ? ISN_ADDLIST
: vartype == VAR_BLOB ? ISN_ADDBLOB
: vartype == VAR_FLOAT ? ISN_OPFLOAT
: ISN_OPANY, 1);
if (vartype != VAR_LIST && vartype != VAR_BLOB
&& type1->tt_type != VAR_ANY
&& type1->tt_type != VAR_UNKNOWN
&& type2->tt_type != VAR_ANY
&& type2->tt_type != VAR_UNKNOWN
&& check_number_or_float(type1, type2, (char_u *)"+") == FAIL)
return FAIL;
if (isn != NULL)
{
if (isn->isn_type == ISN_ADDLIST)
isn->isn_arg.op.op_type = expr_type;
else
isn->isn_arg.op.op_type = EXPR_ADD;
}
// When concatenating two lists with different member types the member type
// becomes "any".
if (vartype == VAR_LIST
&& type1->tt_type == VAR_LIST && type2->tt_type == VAR_LIST
&& type1->tt_member != type2->tt_member)
set_type_on_stack(cctx, &t_list_any, 0);
return isn == NULL ? FAIL : OK;
}
/*
* Get the type to use for an instruction for an operation on "type1" and
* "type2". If they are matching use a type-specific instruction. Otherwise
* fall back to runtime type checking.
*/
vartype_T
operator_type(type_T *type1, type_T *type2)
{
if (type1->tt_type == type2->tt_type
&& (type1->tt_type == VAR_NUMBER
|| type1->tt_type == VAR_LIST
|| type1->tt_type == VAR_FLOAT
|| type1->tt_type == VAR_BLOB))
return type1->tt_type;
return VAR_ANY;
}
/*
* Generate an instruction with two arguments. The instruction depends on the
* type of the arguments.
*/
int
generate_two_op(cctx_T *cctx, char_u *op)
{
type_T *type1;
type_T *type2;
vartype_T vartype;
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
// Get the known type of the two items on the stack.
type1 = get_type_on_stack(cctx, 1);
type2 = get_type_on_stack(cctx, 0);
vartype = operator_type(type1, type2);
switch (*op)
{
case '+':
if (generate_add_instr(cctx, vartype, type1, type2,
EXPR_COPY) == FAIL)
return FAIL;
break;
case '-':
case '*':
case '/': if (check_number_or_float(type1, type2, op) == FAIL)
return FAIL;
if (vartype == VAR_NUMBER)
isn = generate_instr_drop(cctx, ISN_OPNR, 1);
else if (vartype == VAR_FLOAT)
isn = generate_instr_drop(cctx, ISN_OPFLOAT, 1);
else
isn = generate_instr_drop(cctx, ISN_OPANY, 1);
if (isn != NULL)
isn->isn_arg.op.op_type = *op == '*'
? EXPR_MULT : *op == '/'? EXPR_DIV : EXPR_SUB;
break;
case '%': if ((type1->tt_type != VAR_ANY
&& type1->tt_type != VAR_UNKNOWN
&& type1->tt_type != VAR_NUMBER)
|| (type2->tt_type != VAR_ANY
&& type2->tt_type != VAR_UNKNOWN
&& type2->tt_type != VAR_NUMBER))
{
emsg(_(e_percent_requires_number_arguments));
return FAIL;
}
isn = generate_instr_drop(cctx,
vartype == VAR_NUMBER ? ISN_OPNR : ISN_OPANY, 1);
if (isn != NULL)
isn->isn_arg.op.op_type = EXPR_REM;
break;
}
// correct type of result
if (vartype == VAR_ANY)
{
type_T *type = &t_any;
// float+number and number+float results in float
if ((type1->tt_type == VAR_NUMBER || type1->tt_type == VAR_FLOAT)
&& (type2->tt_type == VAR_NUMBER || type2->tt_type == VAR_FLOAT))
type = &t_float;
set_type_on_stack(cctx, type, 0);
}
return OK;
}
/*
* Choose correct error message for the specified type information.
*/
static isntype_T
compare_isn_not_values(typval_T *tv, type_T *type)
{
if (tv != NULL)
(void)check_typval_is_value(tv);
else
(void)check_type_is_value(type);
return ISN_DROP;
}
/*
* Get the instruction to use for comparing two values with specified types.
* Either "tv1" and "tv2" are passed or "type1" and "type2".
* Return ISN_DROP when failed.
*/
static isntype_T
get_compare_isn(
exprtype_T exprtype,
typval_T *tv1,
typval_T *tv2,
type_T *type1,
type_T *type2)
{
isntype_T isntype = ISN_DROP;
vartype_T vartype1 = tv1 != NULL ? tv1->v_type : type1->tt_type;
vartype_T vartype2 = tv2 != NULL ? tv2->v_type : type2->tt_type;
if (vartype1 == VAR_CLASS || vartype1 == VAR_TYPEALIAS)
return compare_isn_not_values(tv1, type1);
if (vartype2 == VAR_CLASS || vartype2 == VAR_TYPEALIAS)
return compare_isn_not_values(tv2, type2);
if (vartype1 == vartype2)
{
switch (vartype1)
{
case VAR_BOOL: isntype = ISN_COMPAREBOOL; break;
case VAR_SPECIAL: isntype = ISN_COMPARESPECIAL; break;
case VAR_NUMBER: isntype = ISN_COMPARENR; break;
case VAR_FLOAT: isntype = ISN_COMPAREFLOAT; break;
case VAR_STRING: isntype = ISN_COMPARESTRING; break;
case VAR_BLOB: isntype = ISN_COMPAREBLOB; break;
case VAR_LIST: isntype = ISN_COMPARELIST; break;
case VAR_DICT: isntype = ISN_COMPAREDICT; break;
case VAR_FUNC: isntype = ISN_COMPAREFUNC; break;
case VAR_OBJECT: isntype = ISN_COMPAREOBJECT; break;
default: isntype = ISN_COMPAREANY; break;
}
}
else if (vartype1 == VAR_ANY || vartype2 == VAR_ANY
|| ((vartype1 == VAR_NUMBER || vartype1 == VAR_FLOAT)
&& (vartype2 == VAR_NUMBER || vartype2 == VAR_FLOAT))
|| (vartype1 == VAR_FUNC && vartype2 == VAR_PARTIAL)
|| (vartype1 == VAR_PARTIAL && vartype2 == VAR_FUNC))
isntype = ISN_COMPAREANY;
else if (vartype1 == VAR_SPECIAL || vartype2 == VAR_SPECIAL)
{
if ((vartype1 == VAR_SPECIAL
&& (tv1 != NULL ? tv1->vval.v_number == VVAL_NONE
: type1 == &t_none)
&& vartype2 != VAR_STRING)
|| (vartype2 == VAR_SPECIAL
&& (tv2 != NULL ? tv2->vval.v_number == VVAL_NONE
: type2 == &t_none)
&& vartype1 != VAR_STRING))
{
semsg(_(e_cannot_compare_str_with_str),
vartype_name(vartype1), vartype_name(vartype2));
return ISN_DROP;
}
// although comparing null with number, float or bool is not useful, we
// allow it
isntype = ISN_COMPARENULL;
}
if ((exprtype == EXPR_IS || exprtype == EXPR_ISNOT)
&& (isntype == ISN_COMPAREBOOL
|| isntype == ISN_COMPARESPECIAL
|| isntype == ISN_COMPARENR
|| isntype == ISN_COMPAREFLOAT))
{
semsg(_(e_cannot_use_str_with_str),
exprtype == EXPR_IS ? "is" : "isnot" , vartype_name(vartype1));
return ISN_DROP;
}
if (!(exprtype == EXPR_IS || exprtype == EXPR_ISNOT
|| exprtype == EXPR_EQUAL || exprtype == EXPR_NEQUAL)
&& (isntype == ISN_COMPAREOBJECT))
{
semsg(_(e_invalid_operation_for_str), vartype_name(vartype1));
return ISN_DROP;
}
if (isntype == ISN_DROP
|| (isntype != ISN_COMPARENULL
&& (((exprtype != EXPR_EQUAL
&& exprtype != EXPR_NEQUAL
&& (vartype1 == VAR_BOOL || vartype1 == VAR_SPECIAL
|| vartype2 == VAR_BOOL || vartype2 == VAR_SPECIAL)))
|| ((exprtype != EXPR_EQUAL
&& exprtype != EXPR_NEQUAL
&& exprtype != EXPR_IS
&& exprtype != EXPR_ISNOT
&& (vartype1 == VAR_BLOB || vartype2 == VAR_BLOB
|| vartype1 == VAR_LIST || vartype2 == VAR_LIST))))))
{
semsg(_(e_cannot_compare_str_with_str),
vartype_name(vartype1), vartype_name(vartype2));
return ISN_DROP;
}
return isntype;
}
int
check_compare_types(exprtype_T type, typval_T *tv1, typval_T *tv2)
{
if (get_compare_isn(type, tv1, tv2, NULL, NULL) == ISN_DROP)
return FAIL;
return OK;
}
/*
* Generate an ISN_COMPARE* instruction with a boolean result.
*/
int
generate_COMPARE(cctx_T *cctx, exprtype_T exprtype, int ic)
{
isntype_T isntype;
isn_T *isn;
garray_T *stack = &cctx->ctx_type_stack;
RETURN_OK_IF_SKIP(cctx);
// Get the known type of the two items on the stack. If they are matching
// use a type-specific instruction. Otherwise fall back to runtime type
// checking.
isntype = get_compare_isn(exprtype, NULL, NULL,
get_type_on_stack(cctx, 1), get_type_on_stack(cctx, 0));
if (isntype == ISN_DROP)
return FAIL;
if ((isn = generate_instr(cctx, isntype)) == NULL)
return FAIL;
isn->isn_arg.op.op_type = exprtype;
isn->isn_arg.op.op_ic = ic;
// takes two arguments, puts one bool back
--stack->ga_len;
set_type_on_stack(cctx, &t_bool, 0);
return OK;
}
/*
* Generate an ISN_CONCAT instruction.
* "count" is the number of stack elements to join together and it must be
* greater or equal to one.
* The caller ensures all the "count" elements on the stack have the right type.
*/
int
generate_CONCAT(cctx_T *cctx, int count)
{
isn_T *isn;
garray_T *stack = &cctx->ctx_type_stack;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_CONCAT)) == NULL)
return FAIL;
isn->isn_arg.number = count;
// drop the argument types
stack->ga_len -= count - 1;
return OK;
}
/*
* Generate an ISN_2BOOL instruction.
* "offset" is the offset in the type stack.
*/
int
generate_2BOOL(cctx_T *cctx, int invert, int offset)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_2BOOL)) == NULL)
return FAIL;
isn->isn_arg.tobool.invert = invert;
isn->isn_arg.tobool.offset = offset;
// type becomes bool
set_type_on_stack(cctx, &t_bool, -1 - offset);
return OK;
}
/*
* Generate an ISN_COND2BOOL instruction.
*/
int
generate_COND2BOOL(cctx_T *cctx)
{
RETURN_OK_IF_SKIP(cctx);
if (generate_instr(cctx, ISN_COND2BOOL) == NULL)
return FAIL;
// type becomes bool
set_type_on_stack(cctx, &t_bool, 0);
return OK;
}
int
generate_TYPECHECK(
cctx_T *cctx,
type_T *expected,
int number_ok, // add TTFLAG_NUMBER_OK flag
int offset,
int is_var,
int argidx)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_CHECKTYPE)) == NULL)
return FAIL;
type_T *tt;
if (expected->tt_type == VAR_FLOAT && number_ok)
{
// always allocate, also for static types
tt = ALLOC_ONE(type_T);
if (tt != NULL)
{
*tt = *expected;
tt->tt_flags &= ~TTFLAG_STATIC;
tt->tt_flags |= TTFLAG_NUMBER_OK;
}
}
else
tt = alloc_type(expected);
isn->isn_arg.type.ct_type = tt;
isn->isn_arg.type.ct_off = (int8_T)offset;
isn->isn_arg.type.ct_is_var = is_var;
isn->isn_arg.type.ct_arg_idx = (int8_T)argidx;
// type becomes expected
set_type_on_stack(cctx, expected, -1 - offset);
return OK;
}
int
generate_SETTYPE(
cctx_T *cctx,
type_T *expected)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_SETTYPE)) == NULL)
return FAIL;
isn->isn_arg.type.ct_type = alloc_type(expected);
return OK;
}
/*
* Generate an ISN_PUSHOBJ instruction. Object is always NULL.
*/
int
generate_PUSHOBJ(cctx_T *cctx)
{
RETURN_OK_IF_SKIP(cctx);
if (generate_instr_type(cctx, ISN_PUSHOBJ, &t_object) == NULL)
return FAIL;
return OK;
}
/*
* Generate an ISN_PUSHCLASS instruction. "class" can be NULL.
*/
static int
generate_PUSHCLASS(cctx_T *cctx, class_T *class)
{
RETURN_OK_IF_SKIP(cctx);
isn_T *isn = generate_instr_type(cctx, ISN_PUSHCLASS,
class == NULL ? &t_any : &class->class_type);
if (isn == NULL)
return FAIL;
isn->isn_arg.classarg = class;
if (class != NULL)
++class->class_refcount;
return OK;
}
/*
* Generate a PUSH instruction for "tv".
* "tv" will be consumed or cleared.
*/
int
generate_tv_PUSH(cctx_T *cctx, typval_T *tv)
{
switch (tv->v_type)
{
case VAR_BOOL:
generate_PUSHBOOL(cctx, tv->vval.v_number);
break;
case VAR_SPECIAL:
generate_PUSHSPEC(cctx, tv->vval.v_number);
break;
case VAR_NUMBER:
generate_PUSHNR(cctx, tv->vval.v_number);
break;
case VAR_FLOAT:
generate_PUSHF(cctx, tv->vval.v_float);
break;
case VAR_BLOB:
generate_PUSHBLOB(cctx, tv->vval.v_blob);
tv->vval.v_blob = NULL;
break;
case VAR_LIST:
if (tv->vval.v_list != NULL)
iemsg("non-empty list constant not supported");
generate_NEWLIST(cctx, 0, TRUE);
break;
case VAR_DICT:
if (tv->vval.v_dict != NULL)
iemsg("non-empty dict constant not supported");
generate_NEWDICT(cctx, 0, TRUE);
break;
#ifdef FEAT_JOB_CHANNEL
case VAR_JOB:
if (tv->vval.v_job != NULL)
iemsg("non-null job constant not supported");
generate_PUSHJOB(cctx);
break;
case VAR_CHANNEL:
if (tv->vval.v_channel != NULL)
iemsg("non-null channel constant not supported");
generate_PUSHCHANNEL(cctx);
break;
#endif
case VAR_FUNC:
if (tv->vval.v_string != NULL)
iemsg("non-null function constant not supported");
generate_PUSHFUNC(cctx, NULL, &t_func_unknown, TRUE);
break;
case VAR_PARTIAL:
if (tv->vval.v_partial != NULL)
iemsg("non-null partial constant not supported");
if (generate_instr_type(cctx, ISN_NEWPARTIAL, &t_func_unknown)
== NULL)
return FAIL;
break;
case VAR_STRING:
generate_PUSHS(cctx, &tv->vval.v_string);
tv->vval.v_string = NULL;
break;
case VAR_OBJECT:
if (tv->vval.v_object != NULL)
{
emsg(_(e_cannot_use_non_null_object));
return FAIL;
}
generate_PUSHOBJ(cctx);
break;
case VAR_CLASS:
generate_PUSHCLASS(cctx, tv->vval.v_class);
break;
default:
siemsg("constant type %d not supported", tv->v_type);
clear_tv(tv);
return FAIL;
}
tv->v_type = VAR_UNKNOWN;
return OK;
}
/*
* Generate an ISN_PUSHNR instruction.
*/
int
generate_PUSHNR(cctx_T *cctx, varnumber_T number)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_type(cctx, ISN_PUSHNR, &t_number)) == NULL)
return FAIL;
isn->isn_arg.number = number;
if (number == 0 || number == 1)
// A 0 or 1 number can also be used as a bool.
set_type_on_stack(cctx, &t_number_bool, 0);
return OK;
}
/*
* Generate an ISN_PUSHBOOL instruction.
*/
int
generate_PUSHBOOL(cctx_T *cctx, varnumber_T number)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_type(cctx, ISN_PUSHBOOL, &t_bool)) == NULL)
return FAIL;
isn->isn_arg.number = number;
return OK;
}
/*
* Generate an ISN_PUSHSPEC instruction.
*/
int
generate_PUSHSPEC(cctx_T *cctx, varnumber_T number)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_type(cctx, ISN_PUSHSPEC,
number == VVAL_NULL ? &t_null : &t_none)) == NULL)
return FAIL;
isn->isn_arg.number = number;
return OK;
}
/*
* Generate an ISN_PUSHF instruction.
*/
int
generate_PUSHF(cctx_T *cctx, float_T fnumber)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_type(cctx, ISN_PUSHF, &t_float)) == NULL)
return FAIL;
isn->isn_arg.fnumber = fnumber;
return OK;
}
/*
* Generate an ISN_PUSHS instruction.
* Consumes "*str". When freed *str is set to NULL, unless "str" is NULL.
* Note that if "str" is used in the instruction OK is returned and "*str" is
* not set to NULL.
*/
int
generate_PUSHS(cctx_T *cctx, char_u **str)
{
isn_T *isn;
int ret = OK;
if (cctx->ctx_skip != SKIP_YES)
{
if ((isn = generate_instr_type(cctx, ISN_PUSHS, &t_string)) == NULL)
ret = FAIL;
else
{
isn->isn_arg.string = str == NULL ? NULL : *str;
return OK;
}
}
if (str != NULL)
VIM_CLEAR(*str);
return ret;
}
/*
* Generate an ISN_PUSHCHANNEL instruction. Channel is always NULL.
*/
int
generate_PUSHCHANNEL(cctx_T *cctx)
{
RETURN_OK_IF_SKIP(cctx);
#ifdef FEAT_JOB_CHANNEL
if (generate_instr_type(cctx, ISN_PUSHCHANNEL, &t_channel) == NULL)
return FAIL;
return OK;
#else
emsg(_(e_channel_job_feature_not_available));
return FAIL;
#endif
}
/*
* Generate an ISN_PUSHJOB instruction. Job is always NULL.
*/
int
generate_PUSHJOB(cctx_T *cctx)
{
RETURN_OK_IF_SKIP(cctx);
#ifdef FEAT_JOB_CHANNEL
if (generate_instr_type(cctx, ISN_PUSHJOB, &t_job) == NULL)
return FAIL;
return OK;
#else
emsg(_(e_channel_job_feature_not_available));
return FAIL;
#endif
}
/*
* Generate an ISN_PUSHBLOB instruction.
* Consumes "blob".
*/
int
generate_PUSHBLOB(cctx_T *cctx, blob_T *blob)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_type(cctx, ISN_PUSHBLOB, &t_blob)) == NULL)
return FAIL;
isn->isn_arg.blob = blob;
return OK;
}
/*
* Generate an ISN_PUSHFUNC instruction with name "name".
* When "may_prefix" is TRUE prefix "g:" unless "name" is script-local or
* autoload.
*/
int
generate_PUSHFUNC(cctx_T *cctx, char_u *name, type_T *type, int may_prefix)
{
isn_T *isn;
char_u *funcname;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_type(cctx, ISN_PUSHFUNC, type)) == NULL)
return FAIL;
if (name == NULL)
funcname = NULL;
else if (!may_prefix
|| *name == K_SPECIAL // script-local
|| vim_strchr(name, AUTOLOAD_CHAR) != NULL) // autoload
funcname = vim_strsave(name);
else
{
funcname = alloc(STRLEN(name) + 3);
if (funcname != NULL)
{
STRCPY(funcname, "g:");
STRCPY(funcname + 2, name);
}
}
isn->isn_arg.string = funcname;
return OK;
}
/*
* Generate an ISN_AUTOLOAD instruction.
*/
int
generate_AUTOLOAD(cctx_T *cctx, char_u *name, type_T *type)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_type(cctx, ISN_AUTOLOAD, type)) == NULL)
return FAIL;
isn->isn_arg.string = vim_strsave(name);
if (isn->isn_arg.string == NULL)
return FAIL;
return OK;
}
/*
* Generate an ISN_GETITEM instruction with "index".
* "with_op" is TRUE for "+=" and other operators, the stack has the current
* value below the list with values.
* Caller must check the type is a list.
*/
int
generate_GETITEM(cctx_T *cctx, int index, int with_op)
{
isn_T *isn;
type_T *type = get_type_on_stack(cctx, with_op ? 1 : 0);
type_T *item_type = &t_any;
RETURN_OK_IF_SKIP(cctx);
item_type = type->tt_member;
if ((isn = generate_instr(cctx, ISN_GETITEM)) == NULL)
return FAIL;
isn->isn_arg.getitem.gi_index = index;
isn->isn_arg.getitem.gi_with_op = with_op;
// add the item type to the type stack
return push_type_stack(cctx, item_type);
}
/*
* Generate an ISN_SLICE instruction with "count".
*/
int
generate_SLICE(cctx_T *cctx, int count)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_SLICE)) == NULL)
return FAIL;
isn->isn_arg.number = count;
return OK;
}
/*
* Generate an ISN_CHECKLEN instruction with "min_len".
*/
int
generate_CHECKLEN(cctx_T *cctx, int min_len, int more_OK)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_CHECKLEN)) == NULL)
return FAIL;
isn->isn_arg.checklen.cl_min_len = min_len;
isn->isn_arg.checklen.cl_more_OK = more_OK;
return OK;
}
/*
* Generate an ISN_STORE instruction.
*/
int
generate_STORE(cctx_T *cctx, isntype_T isn_type, int idx, char_u *name)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_drop(cctx, isn_type, 1)) == NULL)
return FAIL;
if (name != NULL)
isn->isn_arg.string = vim_strsave(name);
else
isn->isn_arg.number = idx;
return OK;
}
/*
* Generate an ISN_LOAD_CLASSMEMBER ("load" == TRUE) or ISN_STORE_CLASSMEMBER
* ("load" == FALSE) instruction.
*/
int
generate_CLASSMEMBER(
cctx_T *cctx,
int load,
class_T *cl,
int idx)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if (load)
{
ocmember_T *m = &cl->class_class_members[idx];
isn = generate_instr_type(cctx, ISN_LOAD_CLASSMEMBER, m->ocm_type);
}
else
{
isn = generate_instr_drop(cctx, ISN_STORE_CLASSMEMBER, 1);
}
if (isn == NULL)
return FAIL;
isn->isn_arg.classmember.cm_class = cl;
++cl->class_refcount;
isn->isn_arg.classmember.cm_idx = idx;
return OK;
}
/*
* Generate an ISN_STOREOUTER instruction.
*/
static int
generate_STOREOUTER(cctx_T *cctx, int idx, int level, int loop_idx)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_drop(cctx, ISN_STOREOUTER, 1)) == NULL)
return FAIL;
if (level == 1 && loop_idx >= 0 && idx >= loop_idx)
{
// Store a variable defined in a loop. A copy will be made at the end
// of the loop. TODO: how about deeper nesting?
isn->isn_arg.outer.outer_idx = idx - loop_idx;
isn->isn_arg.outer.outer_depth = OUTER_LOOP_DEPTH;
}
else
{
isn->isn_arg.outer.outer_idx = idx;
isn->isn_arg.outer.outer_depth = level;
}
return OK;
}
/*
* Generate an ISN_STORENR instruction (short for ISN_PUSHNR + ISN_STORE)
*/
int
generate_STORENR(cctx_T *cctx, int idx, varnumber_T value)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_STORENR)) == NULL)
return FAIL;
isn->isn_arg.storenr.stnr_idx = idx;
isn->isn_arg.storenr.stnr_val = value;
return OK;
}
/*
* Generate an ISN_STOREOPT or ISN_STOREFUNCOPT instruction
*/
static int
generate_STOREOPT(
cctx_T *cctx,
isntype_T isn_type,
char_u *name,
int opt_flags)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_drop(cctx, isn_type, 1)) == NULL)
return FAIL;
isn->isn_arg.storeopt.so_name = vim_strsave(name);
isn->isn_arg.storeopt.so_flags = opt_flags;
return OK;
}
/*
* Generate an ISN_LOAD or similar instruction.
*/
int
generate_LOAD(
cctx_T *cctx,
isntype_T isn_type,
int idx,
char_u *name,
type_T *type)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_type2(cctx, isn_type, type, type)) == NULL)
return FAIL;
if (name != NULL)
isn->isn_arg.string = vim_strsave(name);
else
isn->isn_arg.number = idx;
return OK;
}
/*
* Generate an ISN_LOADOUTER instruction
*/
int
generate_LOADOUTER(
cctx_T *cctx,
int idx,
int nesting,
int loop_depth,
int loop_idx,
type_T *type)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_type2(cctx, ISN_LOADOUTER, type, type)) == NULL)
return FAIL;
if (nesting == 1 && loop_idx >= 0 && idx >= loop_idx)
{
// Load a variable defined in a loop. A copy will be made at the end
// of the loop.
isn->isn_arg.outer.outer_idx = idx - loop_idx;
isn->isn_arg.outer.outer_depth = -loop_depth - 1;
}
else
{
isn->isn_arg.outer.outer_idx = idx;
isn->isn_arg.outer.outer_depth = nesting;
}
return OK;
}
/*
* Generate an ISN_LOADV instruction for v:var.
*/
int
generate_LOADV(
cctx_T *cctx,
char_u *name)
{
int di_flags;
int vidx = find_vim_var(name, &di_flags);
type_T *type;
RETURN_OK_IF_SKIP(cctx);
if (vidx < 0)
{
semsg(_(e_variable_not_found_str), name);
return FAIL;
}
type = get_vim_var_type(vidx, cctx->ctx_type_list);
return generate_LOAD(cctx, ISN_LOADV, vidx, NULL, type);
}
/*
* Generate an ISN_UNLET instruction.
*/
int
generate_UNLET(cctx_T *cctx, isntype_T isn_type, char_u *name, int forceit)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, isn_type)) == NULL)
return FAIL;
isn->isn_arg.unlet.ul_name = vim_strsave(name);
isn->isn_arg.unlet.ul_forceit = forceit;
return OK;
}
/*
* Generate an ISN_LOCKCONST instruction.
*/
int
generate_LOCKCONST(cctx_T *cctx)
{
RETURN_OK_IF_SKIP(cctx);
if (generate_instr(cctx, ISN_LOCKCONST) == NULL)
return FAIL;
return OK;
}
/*
* Generate an ISN_LOADS instruction.
*/
int
generate_OLDSCRIPT(
cctx_T *cctx,
isntype_T isn_type,
char_u *name,
int sid,
type_T *type)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if (isn_type == ISN_LOADS || isn_type == ISN_LOADEXPORT)
isn = generate_instr_type(cctx, isn_type, type);
else
isn = generate_instr_drop(cctx, isn_type, 1);
if (isn == NULL)
return FAIL;
isn->isn_arg.loadstore.ls_name = vim_strsave(name);
isn->isn_arg.loadstore.ls_sid = sid;
return OK;
}
/*
* Generate an ISN_LOADSCRIPT or ISN_STORESCRIPT instruction.
*/
int
generate_VIM9SCRIPT(
cctx_T *cctx,
isntype_T isn_type,
int sid,
int idx,
type_T *type)
{
isn_T *isn;
scriptref_T *sref;
scriptitem_T *si = SCRIPT_ITEM(sid);
RETURN_OK_IF_SKIP(cctx);
if (isn_type == ISN_LOADSCRIPT)
isn = generate_instr_type2(cctx, isn_type, type, type);
else
isn = generate_instr_drop(cctx, isn_type, 1);
if (isn == NULL)
return FAIL;
// This requires three arguments, which doesn't fit in an instruction, thus
// we need to allocate a struct for this.
sref = ALLOC_ONE(scriptref_T);
if (sref == NULL)
return FAIL;
isn->isn_arg.script.scriptref = sref;
sref->sref_sid = sid;
sref->sref_idx = idx;
sref->sref_seq = si->sn_script_seq;
sref->sref_type = type;
return OK;
}
/*
* Generate an ISN_NEWLIST instruction for "count" items.
* "use_null" is TRUE for null_list.
*/
int
generate_NEWLIST(cctx_T *cctx, int count, int use_null)
{
isn_T *isn;
type_T *member_type;
type_T *type;
type_T *decl_type;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_NEWLIST)) == NULL)
return FAIL;
isn->isn_arg.number = use_null ? -1 : count;
// Get the member type and the declared member type from all the items on
// the stack.
if ((member_type = get_member_type_from_stack(count, 1, cctx)) == NULL)
return FAIL;
type = get_list_type(member_type, cctx->ctx_type_list);
decl_type = get_list_type(&t_any, cctx->ctx_type_list);
// drop the value types
cctx->ctx_type_stack.ga_len -= count;
// add the list type to the type stack
return push_type_stack2(cctx, type, decl_type);
}
/*
* Generate an ISN_NEWDICT instruction.
* "use_null" is TRUE for null_dict.
*/
int
generate_NEWDICT(cctx_T *cctx, int count, int use_null)
{
isn_T *isn;
type_T *member_type;
type_T *type;
type_T *decl_type;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_NEWDICT)) == NULL)
return FAIL;
isn->isn_arg.number = use_null ? -1 : count;
if ((member_type = get_member_type_from_stack(count, 2, cctx)) == NULL)
return FAIL;
type = get_dict_type(member_type, cctx->ctx_type_list);
decl_type = get_dict_type(&t_any, cctx->ctx_type_list);
// drop the key and value types
cctx->ctx_type_stack.ga_len -= 2 * count;
// add the dict type to the type stack
return push_type_stack2(cctx, type, decl_type);
}
/*
* Generate an ISN_FUNCREF instruction.
* For "obj.Method" "cl" is the class of the object (can be an interface or a
* base class) and "fi" the index of the method on that class.
* "isn_idx" is set to the index of the instruction, so that fr_dfunc_idx can
* be set later. The index is used instead of a pointer to the instruction
* because the instruction memory can be reallocated.
*/
int
generate_FUNCREF(
cctx_T *cctx,
ufunc_T *ufunc,
class_T *cl,
int object_method,
int fi,
int *isn_idx)
{
isn_T *isn;
type_T *type;
funcref_extra_T *extra;
loopvarinfo_T loopinfo;
int has_vars;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_FUNCREF)) == NULL)
return FAIL;
if (isn_idx != NULL)
// save the index of the new instruction
*isn_idx = cctx->ctx_instr.ga_len - 1;
has_vars = get_loop_var_info(cctx, &loopinfo);
if (ufunc->uf_def_status == UF_NOT_COMPILED || has_vars || cl != NULL)
{
extra = ALLOC_CLEAR_ONE(funcref_extra_T);
if (extra == NULL)
return FAIL;
isn->isn_arg.funcref.fr_extra = extra;
extra->fre_loopvar_info = loopinfo;
if (cl != NULL)
{
extra->fre_class = cl;
++cl->class_refcount;
extra->fre_object_method = object_method;
extra->fre_method_idx = fi;
}
}
if (ufunc->uf_def_status == UF_NOT_COMPILED || cl != NULL)
extra->fre_func_name = vim_strnsave(ufunc->uf_name, ufunc->uf_namelen);
if (ufunc->uf_def_status != UF_NOT_COMPILED && cl == NULL)
{
if (isn_idx == NULL && ufunc->uf_def_status == UF_TO_BE_COMPILED)
// compile the function now, we need the uf_dfunc_idx value
(void)compile_def_function(ufunc, FALSE, CT_NONE, NULL);
isn->isn_arg.funcref.fr_dfunc_idx = ufunc->uf_dfunc_idx;
}
// Reserve an extra variable to keep track of the number of closures
// created.
cctx->ctx_has_closure = 1;
// If the referenced function is a closure, it may use items further up in
// the nested context, including this one. But not a function defined at
// the script level.
if ((ufunc->uf_flags & FC_CLOSURE)
&& func_name_refcount(cctx->ctx_ufunc->uf_name))
cctx->ctx_ufunc->uf_flags |= FC_CLOSURE;
type = ufunc->uf_func_type == NULL ? &t_func_any : ufunc->uf_func_type;
return push_type_stack(cctx, type);
}
/*
* Generate an ISN_NEWFUNC instruction.
* "lambda_name" and "func_name" must be in allocated memory and will be
* consumed.
*/
int
generate_NEWFUNC(
cctx_T *cctx,
char_u *lambda_name,
char_u *func_name)
{
isn_T *isn;
int ret = OK;
if (cctx->ctx_skip != SKIP_YES)
{
if ((isn = generate_instr(cctx, ISN_NEWFUNC)) == NULL)
ret = FAIL;
else
{
newfuncarg_T *arg = ALLOC_CLEAR_ONE(newfuncarg_T);
if (arg == NULL)
ret = FAIL;
else
{
// Reserve an extra variable to keep track of the number of
// closures created.
cctx->ctx_has_closure = 1;
isn->isn_arg.newfunc.nf_arg = arg;
arg->nfa_lambda = lambda_name;
arg->nfa_global = func_name;
(void)get_loop_var_info(cctx, &arg->nfa_loopvar_info);
return OK;
}
}
}
vim_free(lambda_name);
vim_free(func_name);
return ret;
}
/*
* Generate an ISN_DEF instruction: list functions
*/
int
generate_DEF(cctx_T *cctx, char_u *name, size_t len)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_DEF)) == NULL)
return FAIL;
if (len > 0)
{
isn->isn_arg.string = vim_strnsave(name, len);
if (isn->isn_arg.string == NULL)
return FAIL;
}
return OK;
}
/*
* Generate an ISN_JUMP instruction.
*/
int
generate_JUMP(cctx_T *cctx, jumpwhen_T when, int where)
{
isn_T *isn;
garray_T *stack = &cctx->ctx_type_stack;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_JUMP)) == NULL)
return FAIL;
isn->isn_arg.jump.jump_when = when;
isn->isn_arg.jump.jump_where = where;
if (when != JUMP_ALWAYS && stack->ga_len > 0)
--stack->ga_len;
return OK;
}
/*
* Generate an ISN_WHILE instruction. Similar to ISN_JUMP for :while
*/
int
generate_WHILE(cctx_T *cctx, int funcref_idx)
{
isn_T *isn;
garray_T *stack = &cctx->ctx_type_stack;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_WHILE)) == NULL)
return FAIL;
isn->isn_arg.whileloop.while_funcref_idx = funcref_idx;
isn->isn_arg.whileloop.while_end = 0; // filled in later
if (stack->ga_len > 0)
--stack->ga_len;
return OK;
}
/*
* Generate an ISN_JUMP_IF_ARG_SET or ISN_JUMP_IF_ARG_NOT_SET instruction.
*/
int
generate_JUMP_IF_ARG(cctx_T *cctx, isntype_T isn_type, int arg_off)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, isn_type)) == NULL)
return FAIL;
isn->isn_arg.jumparg.jump_arg_off = arg_off;
// jump_where is set later
return OK;
}
int
generate_FOR(cctx_T *cctx, int loop_idx)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_FOR)) == NULL)
return FAIL;
isn->isn_arg.forloop.for_loop_idx = loop_idx;
// type doesn't matter, will be stored next
return push_type_stack(cctx, &t_any);
}
int
generate_ENDLOOP(cctx_T *cctx, loop_info_T *loop_info)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_ENDLOOP)) == NULL)
return FAIL;
isn->isn_arg.endloop.end_depth = loop_info->li_depth;
isn->isn_arg.endloop.end_funcref_idx = loop_info->li_funcref_idx;
isn->isn_arg.endloop.end_var_idx = loop_info->li_local_count;
isn->isn_arg.endloop.end_var_count =
cctx->ctx_locals.ga_len - loop_info->li_local_count;
return OK;
}
/*
* Generate an ISN_TRYCONT instruction.
*/
int
generate_TRYCONT(cctx_T *cctx, int levels, int where)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_TRYCONT)) == NULL)
return FAIL;
isn->isn_arg.trycont.tct_levels = levels;
isn->isn_arg.trycont.tct_where = where;
return OK;
}
/*
* Check "argount" arguments and their types on the type stack.
* Give an error and return FAIL if something is wrong.
* When "method_call" is NULL no code is generated.
*/
int
check_internal_func_args(
cctx_T *cctx,
int func_idx,
int argcount,
int method_call,
type2_T **argtypes,
type2_T *shuffled_argtypes)
{
garray_T *stack = &cctx->ctx_type_stack;
int argoff = check_internal_func(func_idx, argcount);
if (argoff < 0)
return FAIL;
if (method_call && argoff > 1)
{
if (argcount < argoff)
{
semsg(_(e_not_enough_arguments_for_function_str),
internal_func_name(func_idx));
return FAIL;
}
isn_T *isn = generate_instr(cctx, ISN_SHUFFLE);
if (isn == NULL)
return FAIL;
isn->isn_arg.shuffle.shfl_item = argcount;
isn->isn_arg.shuffle.shfl_up = argoff - 1;
}
if (argcount > 0)
{
type2_T *typep = ((type2_T *)stack->ga_data) + stack->ga_len - argcount;
// Check the types of the arguments.
if (method_call && argoff > 1)
{
int i;
for (i = 0; i < argcount; ++i)
shuffled_argtypes[i] = (i < argoff - 1)
? typep[i + 1]
: (i == argoff - 1) ? typep[0] : typep[i];
*argtypes = shuffled_argtypes;
}
else
{
int i;
for (i = 0; i < argcount; ++i)
shuffled_argtypes[i] = typep[i];
*argtypes = shuffled_argtypes;
}
if (internal_func_check_arg_types(*argtypes, func_idx, argcount,
cctx) == FAIL)
return FAIL;
}
return OK;
}
/*
* Generate an ISN_BCALL instruction.
* "method_call" is TRUE for "value->method()"
* Return FAIL if the number of arguments is wrong.
*/
int
generate_BCALL(cctx_T *cctx, int func_idx, int argcount, int method_call)
{
isn_T *isn;
garray_T *stack = &cctx->ctx_type_stack;
type2_T *argtypes = NULL;
type2_T shuffled_argtypes[MAX_FUNC_ARGS];
type2_T *maptype = NULL;
type_T *type;
type_T *decl_type;
RETURN_OK_IF_SKIP(cctx);
if (check_internal_func_args(cctx, func_idx, argcount, method_call,
&argtypes, shuffled_argtypes) == FAIL)
return FAIL;
if (internal_func_is_map(func_idx))
maptype = argtypes;
if ((isn = generate_instr(cctx, ISN_BCALL)) == NULL)
return FAIL;
isn->isn_arg.bfunc.cbf_idx = func_idx;
isn->isn_arg.bfunc.cbf_argcount = argcount;
// Drop the argument types and push the return type.
stack->ga_len -= argcount;
type = internal_func_ret_type(func_idx, argcount, argtypes, &decl_type,
cctx->ctx_type_list);
if (push_type_stack2(cctx, type, decl_type) == FAIL)
return FAIL;
if (maptype != NULL && maptype[0].type_decl->tt_member != NULL
&& maptype[0].type_decl->tt_member != &t_any)
// Check that map() didn't change the item types.
generate_TYPECHECK(cctx, maptype[0].type_decl, FALSE, -1, FALSE, 1);
return OK;
}
/*
* Generate an ISN_LISTAPPEND instruction. Works like add().
* Argument count is already checked.
*/
int
generate_LISTAPPEND(cctx_T *cctx)
{
type_T *list_type;
type_T *item_type;
type_T *expected;
// Caller already checked that list_type is a list.
// For checking the item type we use the declared type of the list and the
// current type of the added item, adding a string to [1, 2] is OK.
list_type = get_decl_type_on_stack(cctx, 1);
if (arg_type_modifiable(list_type, 1) == FAIL)
return FAIL;
item_type = get_type_on_stack(cctx, 0);
expected = list_type->tt_member;
if (need_type(item_type, expected, FALSE, -1, 0, cctx, FALSE, FALSE) == FAIL)
return FAIL;
if (generate_instr(cctx, ISN_LISTAPPEND) == NULL)
return FAIL;
--cctx->ctx_type_stack.ga_len; // drop the argument
return OK;
}
/*
* Generate an ISN_BLOBAPPEND instruction. Works like add().
* Argument count is already checked.
*/
int
generate_BLOBAPPEND(cctx_T *cctx)
{
type_T *item_type;
// Caller already checked that blob_type is a blob, check it is modifiable.
if (arg_type_modifiable(get_decl_type_on_stack(cctx, 1), 1) == FAIL)
return FAIL;
item_type = get_type_on_stack(cctx, 0);
if (need_type(item_type, &t_number, FALSE,
-1, 0, cctx, FALSE, FALSE) == FAIL)
return FAIL;
if (generate_instr(cctx, ISN_BLOBAPPEND) == NULL)
return FAIL;
--cctx->ctx_type_stack.ga_len; // drop the argument
return OK;
}
/*
* Generate an ISN_DCALL, ISN_UCALL or ISN_METHODCALL instruction.
* When calling a method on an object, of which we know the interface only,
* then "cl" is the interface and "mi" the method index on the interface.
* save is_super in the "isn->isn_arg"; it flags execution to use mfunc
* directly to determine ufunc.
* Return FAIL if the number of arguments is wrong.
*/
int
generate_CALL(
cctx_T *cctx,
ufunc_T *ufunc,
class_T *cl,
int mi,
int pushed_argcount,
int is_super)
{
isn_T *isn;
int regular_args = ufunc->uf_args.ga_len;
int argcount = pushed_argcount;
RETURN_OK_IF_SKIP(cctx);
if (argcount > regular_args && !has_varargs(ufunc))
{
semsg(_(e_too_many_arguments_for_function_str),
printable_func_name(ufunc));
return FAIL;
}
if (argcount < regular_args - ufunc->uf_def_args.ga_len)
{
semsg(_(e_not_enough_arguments_for_function_str),
printable_func_name(ufunc));
return FAIL;
}
if (ufunc->uf_def_status != UF_NOT_COMPILED
&& ufunc->uf_def_status != UF_COMPILE_ERROR)
{
int i;
compiletype_T compile_type;
for (i = 0; i < argcount; ++i)
{
type_T *expected;
type_T *actual;
actual = get_type_on_stack(cctx, argcount - i - 1);
if (check_type_is_value(actual) == FAIL)
return FAIL;
if (actual->tt_type == VAR_SPECIAL
&& i >= regular_args - ufunc->uf_def_args.ga_len)
{
// assume v:none used for default argument value
continue;
}
if (i < regular_args)
{
if (ufunc->uf_arg_types == NULL)
continue;
expected = ufunc->uf_arg_types[i];
}
else if (ufunc->uf_va_type == NULL
|| ufunc->uf_va_type == &t_list_any)
// possibly a lambda or "...: any"
expected = &t_any;
else
expected = ufunc->uf_va_type->tt_member;
if (need_type(actual, expected, FALSE,
-argcount + i, i + 1, cctx, TRUE, FALSE) == FAIL)
{
arg_type_mismatch(expected, actual, i + 1);
return FAIL;
}
}
compile_type = get_compile_type(ufunc);
if (func_needs_compiling(ufunc, compile_type)
&& compile_def_function(ufunc, ufunc->uf_ret_type == NULL,
compile_type, NULL) == FAIL)
return FAIL;
}
if (ufunc->uf_def_status == UF_COMPILE_ERROR)
{
emsg_funcname(e_call_to_function_that_failed_to_compile_str,
ufunc->uf_name);
return FAIL;
}
if ((isn = generate_instr(cctx, cl != NULL ? ISN_METHODCALL
: ufunc->uf_def_status != UF_NOT_COMPILED
? ISN_DCALL : ISN_UCALL)) == NULL)
return FAIL;
if (cl != NULL /* isn->isn_type == ISN_METHODCALL */)
{
isn->isn_arg.mfunc = ALLOC_ONE(cmfunc_T);
if (isn->isn_arg.mfunc == NULL)
return FAIL;
isn->isn_arg.mfunc->cmf_itf = cl;
++cl->class_refcount;
isn->isn_arg.mfunc->cmf_idx = mi;
isn->isn_arg.mfunc->cmf_argcount = argcount;
isn->isn_arg.mfunc->cmf_is_super = is_super;
}
else if (isn->isn_type == ISN_DCALL)
{
isn->isn_arg.dfunc.cdf_idx = ufunc->uf_dfunc_idx;
isn->isn_arg.dfunc.cdf_argcount = argcount;
}
else
{
// A user function may be deleted and redefined later, can't use the
// ufunc pointer, need to look it up again at runtime.
isn->isn_arg.ufunc.cuf_name = vim_strnsave(ufunc->uf_name, ufunc->uf_namelen);
isn->isn_arg.ufunc.cuf_argcount = argcount;
}
// drop the argument types
cctx->ctx_type_stack.ga_len -= argcount;
// For an object or class method call, drop the object/class type.
if (ufunc->uf_class != NULL)
{
// When a class method is called without the class name prefix, then
// the type will not be in the stack.
type_T *stype = get_type_on_stack(cctx, 0);
if (stype->tt_type == VAR_CLASS || stype->tt_type == VAR_OBJECT)
cctx->ctx_type_stack.ga_len--;
}
// add return type
return push_type_stack(cctx, ufunc->uf_ret_type);
}
/*
* Generate an ISN_UCALL instruction when the function isn't defined yet.
*/
int
generate_UCALL(cctx_T *cctx, char_u *name, int argcount)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_UCALL)) == NULL)
return FAIL;
isn->isn_arg.ufunc.cuf_name = vim_strsave(name);
isn->isn_arg.ufunc.cuf_argcount = argcount;
// drop the argument types
cctx->ctx_type_stack.ga_len -= argcount;
// add return value
return push_type_stack(cctx, &t_any);
}
/*
* Check the arguments of function "type" against the types on the stack.
* Returns OK or FAIL;
*/
int
check_func_args_from_type(
cctx_T *cctx,
type_T *type,
int argcount,
int at_top,
char_u *name)
{
if (type->tt_argcount != -1)
{
int varargs = (type->tt_flags & TTFLAG_VARARGS) ? 1 : 0;
if (argcount < type->tt_min_argcount - varargs)
{
emsg_funcname(e_not_enough_arguments_for_function_str, name);
return FAIL;
}
if (!varargs && argcount > type->tt_argcount)
{
emsg_funcname(e_too_many_arguments_for_function_str, name);
return FAIL;
}
if (type->tt_args != NULL)
{
int i;
for (i = 0; i < argcount; ++i)
{
int offset = -argcount + i - (at_top ? 0 : 1);
type_T *actual = get_type_on_stack(cctx, -1 - offset);
type_T *expected;
if (check_type_is_value(actual) == FAIL)
return FAIL;
if (varargs && i >= type->tt_argcount - 1)
{
expected = type->tt_args[type->tt_argcount - 1];
if (expected != NULL && expected->tt_type == VAR_LIST)
expected = expected->tt_member;
if (expected == NULL)
expected = &t_any;
}
else if (i >= type->tt_min_argcount
&& actual->tt_type == VAR_SPECIAL)
expected = &t_any;
else
expected = type->tt_args[i];
if (need_type(actual, expected, FALSE,
offset, i + 1, cctx, TRUE, FALSE) == FAIL)
{
arg_type_mismatch(expected, actual, i + 1);
return FAIL;
}
}
}
}
return OK;
}
/*
* Generate an ISN_PCALL instruction.
* "type" is the type of the FuncRef.
*/
int
generate_PCALL(
cctx_T *cctx,
int argcount,
char_u *name,
type_T *type,
int at_top)
{
isn_T *isn;
type_T *ret_type;
RETURN_OK_IF_SKIP(cctx);
if (type->tt_type == VAR_ANY || type->tt_type == VAR_UNKNOWN)
ret_type = &t_any;
else if (type->tt_type == VAR_FUNC || type->tt_type == VAR_PARTIAL)
{
if (check_func_args_from_type(cctx, type, argcount, at_top, name)
== FAIL)
return FAIL;
ret_type = type->tt_member;
if (ret_type == &t_unknown)
// return type not known yet, use a runtime check
ret_type = &t_any;
}
else
{
semsg(_(e_not_callable_type_str), name);
return FAIL;
}
if ((isn = generate_instr(cctx, ISN_PCALL)) == NULL)
return FAIL;
isn->isn_arg.pfunc.cpf_top = at_top;
isn->isn_arg.pfunc.cpf_argcount = argcount;
// drop the arguments and the funcref/partial
cctx->ctx_type_stack.ga_len -= argcount + 1;
// push the return value
push_type_stack(cctx, ret_type);
// If partial is above the arguments it must be cleared and replaced with
// the return value.
if (at_top && generate_instr(cctx, ISN_PCALL_END) == NULL)
return FAIL;
return OK;
}
/*
* Generate an ISN_DEFER instruction.
*/
int
generate_DEFER(cctx_T *cctx, int var_idx, int argcount)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_drop(cctx, ISN_DEFER, argcount + 1)) == NULL)
return FAIL;
isn->isn_arg.defer.defer_var_idx = var_idx;
isn->isn_arg.defer.defer_argcount = argcount;
return OK;
}
/*
* Generate an ISN_STRINGMEMBER instruction.
*/
int
generate_STRINGMEMBER(cctx_T *cctx, char_u *name, size_t len)
{
isn_T *isn;
type_T *type;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_STRINGMEMBER)) == NULL)
return FAIL;
isn->isn_arg.string = vim_strnsave(name, len);
// check for dict type
type = get_type_on_stack(cctx, 0);
if (type->tt_type != VAR_DICT
&& type->tt_type != VAR_ANY && type->tt_type != VAR_UNKNOWN)
{
char *tofree;
semsg(_(e_expected_dictionary_for_using_key_str_but_got_str),
name, type_name(type, &tofree));
vim_free(tofree);
return FAIL;
}
// change dict type to dict member type
if (type->tt_type == VAR_DICT)
{
type_T *ntype = type->tt_member->tt_type == VAR_UNKNOWN
? &t_any : type->tt_member;
set_type_on_stack(cctx, ntype, 0);
}
return OK;
}
/*
* Generate an ISN_ECHO instruction.
*/
int
generate_ECHO(cctx_T *cctx, int with_white, int count)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_drop(cctx, ISN_ECHO, count)) == NULL)
return FAIL;
isn->isn_arg.echo.echo_with_white = with_white;
isn->isn_arg.echo.echo_count = count;
return OK;
}
/*
* Generate an ISN_EXECUTE/ISN_ECHOMSG/ISN_ECHOERR instruction.
*/
int
generate_MULT_EXPR(cctx_T *cctx, isntype_T isn_type, int count)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr_drop(cctx, isn_type, count)) == NULL)
return FAIL;
isn->isn_arg.number = count;
return OK;
}
/*
* Generate an ISN_ECHOWINDOW instruction
*/
int
generate_ECHOWINDOW(cctx_T *cctx, int count, long time)
{
isn_T *isn;
if ((isn = generate_instr_drop(cctx, ISN_ECHOWINDOW, count)) == NULL)
return FAIL;
isn->isn_arg.echowin.ewin_count = count;
isn->isn_arg.echowin.ewin_time = time;
return OK;
}
/*
* Generate an ISN_SOURCE instruction.
*/
int
generate_SOURCE(cctx_T *cctx, int sid)
{
isn_T *isn;
if ((isn = generate_instr(cctx, ISN_SOURCE)) == NULL)
return FAIL;
isn->isn_arg.number = sid;
return OK;
}
/*
* Generate an ISN_PUT instruction.
*/
int
generate_PUT(cctx_T *cctx, int regname, linenr_T lnum)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_PUT)) == NULL)
return FAIL;
isn->isn_arg.put.put_regname = regname;
isn->isn_arg.put.put_lnum = lnum;
return OK;
}
/*
* Generate a LOCKUNLOCK instruction.The root item, where the indexing starts
* to find the variable, is on the stack. The instr takes
* - the string to parse, "root.b[idx1][idx2].d.val", to find the variable
* - the class, if any, in which the string executes.
* - if the root item is a function argument
* A copy is made of "line".
*/
int
generate_LOCKUNLOCK(cctx_T *cctx, char_u *line, int is_arg)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_LOCKUNLOCK)) == NULL)
return FAIL;
class_T *cl = cctx->ctx_ufunc != NULL ? cctx->ctx_ufunc->uf_class : NULL;
isn->isn_arg.lockunlock.lu_string = vim_strsave(line);
isn->isn_arg.lockunlock.lu_cl_exec = cl;
if (cl != NULL)
++cl->class_refcount;
isn->isn_arg.lockunlock.lu_is_arg = is_arg;
return OK;
}
/*
* Generate an EXEC instruction that takes a string argument.
* A copy is made of "line".
*/
int
generate_EXEC_copy(cctx_T *cctx, isntype_T isntype, char_u *line)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, isntype)) == NULL)
return FAIL;
isn->isn_arg.string = vim_strsave(line);
return OK;
}
/*
* Generate an EXEC instruction that takes a string argument.
* "str" must be allocated, it is consumed.
*/
int
generate_EXEC(cctx_T *cctx, isntype_T isntype, char_u *str)
{
isn_T *isn;
int ret = OK;
if (cctx->ctx_skip != SKIP_YES)
{
if ((isn = generate_instr(cctx, isntype)) == NULL)
ret = FAIL;
else
{
isn->isn_arg.string = str;
return OK;
}
}
vim_free(str);
return ret;
}
int
generate_LEGACY_EVAL(cctx_T *cctx, char_u *line)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_LEGACY_EVAL)) == NULL)
return FAIL;
isn->isn_arg.string = vim_strsave(line);
return push_type_stack(cctx, &t_any);
}
int
generate_EXECCONCAT(cctx_T *cctx, int count)
{
isn_T *isn;
if ((isn = generate_instr_drop(cctx, ISN_EXECCONCAT, count)) == NULL)
return FAIL;
isn->isn_arg.number = count;
return OK;
}
/*
* Generate ISN_RANGE. Consumes "range". Return OK/FAIL.
*/
int
generate_RANGE(cctx_T *cctx, char_u *range)
{
isn_T *isn;
if ((isn = generate_instr(cctx, ISN_RANGE)) == NULL)
return FAIL;
isn->isn_arg.string = range;
return push_type_stack(cctx, &t_number);
}
int
generate_UNPACK(cctx_T *cctx, int var_count, int semicolon)
{
isn_T *isn;
RETURN_OK_IF_SKIP(cctx);
if ((isn = generate_instr(cctx, ISN_UNPACK)) == NULL)
return FAIL;
isn->isn_arg.unpack.unp_count = var_count;
isn->isn_arg.unpack.unp_semicolon = semicolon;
return OK;
}
/*
* Generate an instruction for any command modifiers.
*/
int
generate_cmdmods(cctx_T *cctx, cmdmod_T *cmod)
{
isn_T *isn;
if (has_cmdmod(cmod, FALSE))
{
cctx->ctx_has_cmdmod = TRUE;
if ((isn = generate_instr(cctx, ISN_CMDMOD)) == NULL)
return FAIL;
isn->isn_arg.cmdmod.cf_cmdmod = ALLOC_ONE(cmdmod_T);
if (isn->isn_arg.cmdmod.cf_cmdmod == NULL)
return FAIL;
mch_memmove(isn->isn_arg.cmdmod.cf_cmdmod, cmod, sizeof(cmdmod_T));
// filter program now belongs to the instruction
cmod->cmod_filter_regmatch.regprog = NULL;
}
return OK;
}
int
generate_undo_cmdmods(cctx_T *cctx)
{
if (cctx->ctx_has_cmdmod && generate_instr(cctx, ISN_CMDMOD_REV) == NULL)
return FAIL;
cctx->ctx_has_cmdmod = FALSE;
return OK;
}
/*
* Generate a STORE instruction for "dest", not being "dest_local".
* "lhs" might be NULL.
* Return FAIL when out of memory.
*/
int
generate_store_var(
cctx_T *cctx,
assign_dest_T dest,
int opt_flags,
int vimvaridx,
type_T *type,
char_u *name,
lhs_T *lhs)
{
switch (dest)
{
case dest_option:
return generate_STOREOPT(cctx, ISN_STOREOPT,
skip_option_env_lead(name), opt_flags);
case dest_func_option:
return generate_STOREOPT(cctx, ISN_STOREFUNCOPT,
skip_option_env_lead(name), opt_flags);
case dest_global:
// include g: with the name, easier to execute that way
return generate_STORE(cctx, vim_strchr(name, AUTOLOAD_CHAR) == NULL
? ISN_STOREG : ISN_STOREAUTO, 0, name);
case dest_buffer:
// include b: with the name, easier to execute that way
return generate_STORE(cctx, ISN_STOREB, 0, name);
case dest_window:
// include w: with the name, easier to execute that way
return generate_STORE(cctx, ISN_STOREW, 0, name);
case dest_tab:
// include t: with the name, easier to execute that way
return generate_STORE(cctx, ISN_STORET, 0, name);
case dest_env:
return generate_STORE(cctx, ISN_STOREENV, 0, name + 1);
case dest_reg:
return generate_STORE(cctx, ISN_STOREREG,
name[1] == '@' ? '"' : name[1], NULL);
case dest_vimvar:
return generate_STORE(cctx, ISN_STOREV, vimvaridx, NULL);
case dest_script:
case dest_script_v9:
{
int scriptvar_idx = lhs->lhs_scriptvar_idx;
int scriptvar_sid = lhs->lhs_scriptvar_sid;
if (scriptvar_idx < 0)
{
isntype_T isn_type = ISN_STORES;
// If "sn_import_autoload", generate ISN_STOREEXPORT (not
// ISN_STORES) if destination is in a vim9script or if
// there is no "sn_autoload_prefix".
if (SCRIPT_ID_VALID(scriptvar_sid)
&& SCRIPT_ITEM(scriptvar_sid)->sn_import_autoload
&& ((SCRIPT_ITEM(scriptvar_sid)
->sn_autoload_prefix == NULL)
|| lhs->lhs_dest == dest_script_v9))
{
// "import autoload './dir/script.vim'" - load script
// first
if (generate_SOURCE(cctx, scriptvar_sid) == FAIL)
return FAIL;
isn_type = ISN_STOREEXPORT;
}
// "s:" may be included in the name.
return generate_OLDSCRIPT(cctx, isn_type, name,
scriptvar_sid, type);
}
return generate_VIM9SCRIPT(cctx, ISN_STORESCRIPT,
scriptvar_sid, scriptvar_idx, type);
}
case dest_class_member:
return generate_CLASSMEMBER(cctx, FALSE,
lhs->lhs_class, lhs->lhs_classmember_idx);
case dest_local:
case dest_expr:
// cannot happen
break;
}
return FAIL;
}
/*
* Return TRUE when inside a "for" or "while" loop.
*/
int
inside_loop_scope(cctx_T *cctx)
{
scope_T *scope = cctx->ctx_scope;
for (;;)
{
if (scope == NULL)
break;
if (scope->se_type == FOR_SCOPE || scope->se_type == WHILE_SCOPE)
return TRUE;
scope = scope->se_outer;
}
return FALSE;
}
int
generate_store_lhs(cctx_T *cctx, lhs_T *lhs, int instr_count, int is_decl)
{
if (lhs->lhs_dest != dest_local)
return generate_store_var(cctx, lhs->lhs_dest,
lhs->lhs_opt_flags, lhs->lhs_vimvaridx,
lhs->lhs_type, lhs->lhs_name, lhs);
if (lhs->lhs_lvar == NULL)
return OK;
garray_T *instr = &cctx->ctx_instr;
isn_T *isn = ((isn_T *)instr->ga_data) + instr->ga_len - 1;
// Optimization: turn "var = 123" from ISN_PUSHNR + ISN_STORE into
// ISN_STORENR.
// And "var = 0" does not need any instruction.
if (lhs->lhs_lvar->lv_from_outer == 0
&& instr->ga_len == instr_count + 1
&& isn->isn_type == ISN_PUSHNR)
{
varnumber_T val = isn->isn_arg.number;
garray_T *stack = &cctx->ctx_type_stack;
if (val == 0 && is_decl && !inside_loop_scope(cctx))
{
// zero is the default value, no need to do anything
--instr->ga_len;
}
else
{
isn->isn_type = ISN_STORENR;
isn->isn_arg.storenr.stnr_idx = lhs->lhs_lvar->lv_idx;
isn->isn_arg.storenr.stnr_val = val;
}
if (stack->ga_len > 0)
--stack->ga_len;
}
else if (lhs->lhs_lvar->lv_from_outer > 0)
generate_STOREOUTER(cctx, lhs->lhs_lvar->lv_idx,
lhs->lhs_lvar->lv_from_outer, lhs->lhs_lvar->lv_loop_idx);
else
generate_STORE(cctx, ISN_STORE, lhs->lhs_lvar->lv_idx, NULL);
return OK;
}
#if defined(FEAT_PROFILE) || defined(PROTO)
void
may_generate_prof_end(cctx_T *cctx, int prof_lnum)
{
if (cctx->ctx_compile_type == CT_PROFILE && prof_lnum >= 0)
generate_instr(cctx, ISN_PROF_END);
}
#endif
/*
* Delete an instruction, free what it contains.
*/
void
delete_instr(isn_T *isn)
{
switch (isn->isn_type)
{
case ISN_AUTOLOAD:
case ISN_DEF:
case ISN_EXEC:
case ISN_EXECRANGE:
case ISN_EXEC_SPLIT:
case ISN_LEGACY_EVAL:
case ISN_LOADAUTO:
case ISN_LOADB:
case ISN_LOADENV:
case ISN_LOADG:
case ISN_LOADOPT:
case ISN_LOADT:
case ISN_LOADW:
case ISN_PUSHEXC:
case ISN_PUSHFUNC:
case ISN_PUSHS:
case ISN_RANGE:
case ISN_STOREAUTO:
case ISN_STOREB:
case ISN_STOREENV:
case ISN_STOREG:
case ISN_STORET:
case ISN_STOREW:
case ISN_STRINGMEMBER:
vim_free(isn->isn_arg.string);
break;
case ISN_LOCKUNLOCK:
class_unref(isn->isn_arg.lockunlock.lu_cl_exec);
vim_free(isn->isn_arg.lockunlock.lu_string);
break;
case ISN_SUBSTITUTE:
{
int idx;
isn_T *list = isn->isn_arg.subs.subs_instr;
vim_free(isn->isn_arg.subs.subs_cmd);
for (idx = 0; list[idx].isn_type != ISN_FINISH; ++idx)
delete_instr(list + idx);
vim_free(list);
}
break;
case ISN_INSTR:
{
int idx;
isn_T *list = isn->isn_arg.instr;
for (idx = 0; list[idx].isn_type != ISN_FINISH; ++idx)
delete_instr(list + idx);
vim_free(list);
}
break;
case ISN_LOADS:
case ISN_LOADEXPORT:
case ISN_STORES:
case ISN_STOREEXPORT:
vim_free(isn->isn_arg.loadstore.ls_name);
break;
case ISN_UNLET:
case ISN_UNLETENV:
vim_free(isn->isn_arg.unlet.ul_name);
break;
case ISN_STOREOPT:
case ISN_STOREFUNCOPT:
vim_free(isn->isn_arg.storeopt.so_name);
break;
case ISN_PUSHBLOB: // push blob isn_arg.blob
blob_unref(isn->isn_arg.blob);
break;
case ISN_PUSHCLASS:
class_unref(isn->isn_arg.classarg);
break;
case ISN_UCALL:
vim_free(isn->isn_arg.ufunc.cuf_name);
break;
case ISN_FUNCREF:
{
funcref_T *funcref = &isn->isn_arg.funcref;
funcref_extra_T *extra = funcref->fr_extra;
if (extra == NULL || extra->fre_func_name == NULL)
{
dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data)
+ funcref->fr_dfunc_idx;
ufunc_T *ufunc = dfunc->df_ufunc;
if (ufunc != NULL && func_name_refcount(ufunc->uf_name))
func_ptr_unref(ufunc);
}
if (extra != NULL)
{
char_u *name = extra->fre_func_name;
if (name != NULL)
{
func_unref(name);
vim_free(name);
}
if (extra->fre_class != NULL)
class_unref(extra->fre_class);
vim_free(extra);
}
}
break;
case ISN_DCALL:
{
dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data)
+ isn->isn_arg.dfunc.cdf_idx;
if (dfunc->df_ufunc != NULL
&& func_name_refcount(dfunc->df_ufunc->uf_name))
func_ptr_unref(dfunc->df_ufunc);
}
break;
case ISN_METHODCALL:
{
cmfunc_T *mfunc = isn->isn_arg.mfunc;
class_unref(mfunc->cmf_itf);
vim_free(mfunc);
}
break;
case ISN_NEWFUNC:
{
newfuncarg_T *arg = isn->isn_arg.newfunc.nf_arg;
if (arg != NULL)
{
ufunc_T *ufunc = find_func_even_dead(
arg->nfa_lambda, FFED_IS_GLOBAL);
if (ufunc != NULL)
{
unlink_def_function(ufunc);
func_ptr_unref(ufunc);
}
vim_free(arg->nfa_lambda);
vim_free(arg->nfa_global);
vim_free(arg);
}
}
break;
case ISN_CHECKTYPE:
case ISN_SETTYPE:
free_type(isn->isn_arg.type.ct_type);
break;
case ISN_CMDMOD:
vim_regfree(isn->isn_arg.cmdmod.cf_cmdmod
->cmod_filter_regmatch.regprog);
vim_free(isn->isn_arg.cmdmod.cf_cmdmod);
break;
case ISN_LOADSCRIPT:
case ISN_STORESCRIPT:
vim_free(isn->isn_arg.script.scriptref);
break;
case ISN_LOAD_CLASSMEMBER:
case ISN_STORE_CLASSMEMBER:
case ISN_GET_ITF_MEMBER:
class_unref(isn->isn_arg.classmember.cm_class);
break;
case ISN_STOREINDEX:
class_unref(isn->isn_arg.storeindex.si_class);
break;
case ISN_TRY:
vim_free(isn->isn_arg.tryref.try_ref);
break;
case ISN_CEXPR_CORE:
vim_free(isn->isn_arg.cexpr.cexpr_ref->cer_cmdline);
vim_free(isn->isn_arg.cexpr.cexpr_ref);
break;
case ISN_2BOOL:
case ISN_2STRING:
case ISN_2STRING_ANY:
case ISN_ADDBLOB:
case ISN_ADDLIST:
case ISN_ANYINDEX:
case ISN_ANYSLICE:
case ISN_BCALL:
case ISN_BLOBAPPEND:
case ISN_BLOBINDEX:
case ISN_BLOBSLICE:
case ISN_CATCH:
case ISN_CEXPR_AUCMD:
case ISN_CHECKLEN:
case ISN_CLEARDICT:
case ISN_CMDMOD_REV:
case ISN_COMPAREANY:
case ISN_COMPAREBLOB:
case ISN_COMPAREBOOL:
case ISN_COMPAREDICT:
case ISN_COMPAREFLOAT:
case ISN_COMPAREFUNC:
case ISN_COMPARELIST:
case ISN_COMPARENR:
case ISN_COMPARENULL:
case ISN_COMPAREOBJECT:
case ISN_COMPARESPECIAL:
case ISN_COMPARESTRING:
case ISN_CONCAT:
case ISN_CONSTRUCT:
case ISN_COND2BOOL:
case ISN_DEBUG:
case ISN_DEFER:
case ISN_DROP:
case ISN_ECHO:
case ISN_ECHOCONSOLE:
case ISN_ECHOERR:
case ISN_ECHOMSG:
case ISN_ECHOWINDOW:
case ISN_ENDLOOP:
case ISN_ENDTRY:
case ISN_EXECCONCAT:
case ISN_EXECUTE:
case ISN_FINALLY:
case ISN_FINISH:
case ISN_FOR:
case ISN_GETITEM:
case ISN_GET_OBJ_MEMBER:
case ISN_JUMP:
case ISN_JUMP_IF_ARG_NOT_SET:
case ISN_JUMP_IF_ARG_SET:
case ISN_LISTAPPEND:
case ISN_LISTINDEX:
case ISN_LISTSLICE:
case ISN_LOAD:
case ISN_LOADBDICT:
case ISN_LOADGDICT:
case ISN_LOADOUTER:
case ISN_LOADREG:
case ISN_LOADTDICT:
case ISN_LOADV:
case ISN_LOADWDICT:
case ISN_LOCKCONST:
case ISN_MEMBER:
case ISN_NEGATENR:
case ISN_NEWDICT:
case ISN_NEWLIST:
case ISN_NEWPARTIAL:
case ISN_OPANY:
case ISN_OPFLOAT:
case ISN_OPNR:
case ISN_PCALL:
case ISN_PCALL_END:
case ISN_PROF_END:
case ISN_PROF_START:
case ISN_PUSHBOOL:
case ISN_PUSHCHANNEL:
case ISN_PUSHF:
case ISN_PUSHJOB:
case ISN_PUSHNR:
case ISN_PUSHOBJ:
case ISN_PUSHSPEC:
case ISN_PUT:
case ISN_REDIREND:
case ISN_REDIRSTART:
case ISN_RETURN:
case ISN_RETURN_OBJECT:
case ISN_RETURN_VOID:
case ISN_SHUFFLE:
case ISN_SLICE:
case ISN_SOURCE:
case ISN_STORE:
case ISN_STORENR:
case ISN_STOREOUTER:
case ISN_STORE_THIS:
case ISN_STORERANGE:
case ISN_STOREREG:
case ISN_STOREV:
case ISN_STRINDEX:
case ISN_STRSLICE:
case ISN_THROW:
case ISN_TRYCONT:
case ISN_UNLETINDEX:
case ISN_UNLETRANGE:
case ISN_UNPACK:
case ISN_USEDICT:
case ISN_WHILE:
// nothing allocated
break;
}
}
void
clear_instr_ga(garray_T *gap)
{
int idx;
for (idx = 0; idx < gap->ga_len; ++idx)
delete_instr(((isn_T *)gap->ga_data) + idx);
ga_clear(gap);
}
#endif // defined(FEAT_EVAL)