vim/src/regexp_nfa.c
Christian Brabandt c3a02d78bd
patch 9.1.0701: crash with NFA regex engine when searching for composing chars
Problem:  crash with NFA regex engine when searching for composing chars
          (SuyueGuo)
Solution: When there is no composing character, break out of the loop
          and check that out1 state is not null

fixes: #15583

Signed-off-by: Christian Brabandt <cb@256bit.org>
2024-08-28 23:17:52 +02:00

7764 lines
190 KiB
C

/* vi:set ts=8 sts=4 sw=4 noet:
*
* NFA regular expression implementation.
*
* This file is included in "regexp.c".
*/
/*
* Logging of NFA engine.
*
* The NFA engine can write four log files:
* - Error log: Contains NFA engine's fatal errors.
* - Dump log: Contains compiled NFA state machine's information.
* - Run log: Contains information of matching procedure.
* - Debug log: Contains detailed information of matching procedure. Can be
* disabled by undefining NFA_REGEXP_DEBUG_LOG.
* The first one can also be used without debug mode.
* The last three are enabled when compiled as debug mode and individually
* disabled by commenting them out.
* The log files can get quite big!
* To disable all of this when compiling Vim for debugging, undefine DEBUG in
* regexp.c
*/
#ifdef DEBUG
# define NFA_REGEXP_ERROR_LOG "nfa_regexp_error.log"
# define ENABLE_LOG
# define NFA_REGEXP_DUMP_LOG "nfa_regexp_dump.log"
# define NFA_REGEXP_RUN_LOG "nfa_regexp_run.log"
# define NFA_REGEXP_DEBUG_LOG "nfa_regexp_debug.log"
#endif
// Added to NFA_ANY - NFA_NUPPER_IC to include a NL.
#define NFA_ADD_NL 31
enum
{
NFA_SPLIT = -1024,
NFA_MATCH,
NFA_EMPTY, // matches 0-length
NFA_START_COLL, // [abc] start
NFA_END_COLL, // [abc] end
NFA_START_NEG_COLL, // [^abc] start
NFA_END_NEG_COLL, // [^abc] end (postfix only)
NFA_RANGE, // range of the two previous items
// (postfix only)
NFA_RANGE_MIN, // low end of a range
NFA_RANGE_MAX, // high end of a range
NFA_CONCAT, // concatenate two previous items (postfix
// only)
NFA_OR, // \| (postfix only)
NFA_STAR, // greedy * (postfix only)
NFA_STAR_NONGREEDY, // non-greedy * (postfix only)
NFA_QUEST, // greedy \? (postfix only)
NFA_QUEST_NONGREEDY, // non-greedy \? (postfix only)
NFA_BOL, // ^ Begin line
NFA_EOL, // $ End line
NFA_BOW, // \< Begin word
NFA_EOW, // \> End word
NFA_BOF, // \%^ Begin file
NFA_EOF, // \%$ End file
NFA_NEWL,
NFA_ZSTART, // Used for \zs
NFA_ZEND, // Used for \ze
NFA_NOPEN, // Start of subexpression marked with \%(
NFA_NCLOSE, // End of subexpr. marked with \%( ... \)
NFA_START_INVISIBLE,
NFA_START_INVISIBLE_FIRST,
NFA_START_INVISIBLE_NEG,
NFA_START_INVISIBLE_NEG_FIRST,
NFA_START_INVISIBLE_BEFORE,
NFA_START_INVISIBLE_BEFORE_FIRST,
NFA_START_INVISIBLE_BEFORE_NEG,
NFA_START_INVISIBLE_BEFORE_NEG_FIRST,
NFA_START_PATTERN,
NFA_END_INVISIBLE,
NFA_END_INVISIBLE_NEG,
NFA_END_PATTERN,
NFA_COMPOSING, // Next nodes in NFA are part of the
// composing multibyte char
NFA_END_COMPOSING, // End of a composing char in the NFA
NFA_ANY_COMPOSING, // \%C: Any composing characters.
NFA_OPT_CHARS, // \%[abc]
// The following are used only in the postfix form, not in the NFA
NFA_PREV_ATOM_NO_WIDTH, // Used for \@=
NFA_PREV_ATOM_NO_WIDTH_NEG, // Used for \@!
NFA_PREV_ATOM_JUST_BEFORE, // Used for \@<=
NFA_PREV_ATOM_JUST_BEFORE_NEG, // Used for \@<!
NFA_PREV_ATOM_LIKE_PATTERN, // Used for \@>
NFA_BACKREF1, // \1
NFA_BACKREF2, // \2
NFA_BACKREF3, // \3
NFA_BACKREF4, // \4
NFA_BACKREF5, // \5
NFA_BACKREF6, // \6
NFA_BACKREF7, // \7
NFA_BACKREF8, // \8
NFA_BACKREF9, // \9
#ifdef FEAT_SYN_HL
NFA_ZREF1, // \z1
NFA_ZREF2, // \z2
NFA_ZREF3, // \z3
NFA_ZREF4, // \z4
NFA_ZREF5, // \z5
NFA_ZREF6, // \z6
NFA_ZREF7, // \z7
NFA_ZREF8, // \z8
NFA_ZREF9, // \z9
#endif
NFA_SKIP, // Skip characters
NFA_MOPEN,
NFA_MOPEN1,
NFA_MOPEN2,
NFA_MOPEN3,
NFA_MOPEN4,
NFA_MOPEN5,
NFA_MOPEN6,
NFA_MOPEN7,
NFA_MOPEN8,
NFA_MOPEN9,
NFA_MCLOSE,
NFA_MCLOSE1,
NFA_MCLOSE2,
NFA_MCLOSE3,
NFA_MCLOSE4,
NFA_MCLOSE5,
NFA_MCLOSE6,
NFA_MCLOSE7,
NFA_MCLOSE8,
NFA_MCLOSE9,
#ifdef FEAT_SYN_HL
NFA_ZOPEN,
NFA_ZOPEN1,
NFA_ZOPEN2,
NFA_ZOPEN3,
NFA_ZOPEN4,
NFA_ZOPEN5,
NFA_ZOPEN6,
NFA_ZOPEN7,
NFA_ZOPEN8,
NFA_ZOPEN9,
NFA_ZCLOSE,
NFA_ZCLOSE1,
NFA_ZCLOSE2,
NFA_ZCLOSE3,
NFA_ZCLOSE4,
NFA_ZCLOSE5,
NFA_ZCLOSE6,
NFA_ZCLOSE7,
NFA_ZCLOSE8,
NFA_ZCLOSE9,
#endif
// NFA_FIRST_NL
NFA_ANY, // Match any one character.
NFA_IDENT, // Match identifier char
NFA_SIDENT, // Match identifier char but no digit
NFA_KWORD, // Match keyword char
NFA_SKWORD, // Match word char but no digit
NFA_FNAME, // Match file name char
NFA_SFNAME, // Match file name char but no digit
NFA_PRINT, // Match printable char
NFA_SPRINT, // Match printable char but no digit
NFA_WHITE, // Match whitespace char
NFA_NWHITE, // Match non-whitespace char
NFA_DIGIT, // Match digit char
NFA_NDIGIT, // Match non-digit char
NFA_HEX, // Match hex char
NFA_NHEX, // Match non-hex char
NFA_OCTAL, // Match octal char
NFA_NOCTAL, // Match non-octal char
NFA_WORD, // Match word char
NFA_NWORD, // Match non-word char
NFA_HEAD, // Match head char
NFA_NHEAD, // Match non-head char
NFA_ALPHA, // Match alpha char
NFA_NALPHA, // Match non-alpha char
NFA_LOWER, // Match lowercase char
NFA_NLOWER, // Match non-lowercase char
NFA_UPPER, // Match uppercase char
NFA_NUPPER, // Match non-uppercase char
NFA_LOWER_IC, // Match [a-z]
NFA_NLOWER_IC, // Match [^a-z]
NFA_UPPER_IC, // Match [A-Z]
NFA_NUPPER_IC, // Match [^A-Z]
NFA_FIRST_NL = NFA_ANY + NFA_ADD_NL,
NFA_LAST_NL = NFA_NUPPER_IC + NFA_ADD_NL,
NFA_CURSOR, // Match cursor pos
NFA_LNUM, // Match line number
NFA_LNUM_GT, // Match > line number
NFA_LNUM_LT, // Match < line number
NFA_COL, // Match cursor column
NFA_COL_GT, // Match > cursor column
NFA_COL_LT, // Match < cursor column
NFA_VCOL, // Match cursor virtual column
NFA_VCOL_GT, // Match > cursor virtual column
NFA_VCOL_LT, // Match < cursor virtual column
NFA_MARK, // Match mark
NFA_MARK_GT, // Match > mark
NFA_MARK_LT, // Match < mark
NFA_VISUAL, // Match Visual area
// Character classes [:alnum:] etc
NFA_CLASS_ALNUM,
NFA_CLASS_ALPHA,
NFA_CLASS_BLANK,
NFA_CLASS_CNTRL,
NFA_CLASS_DIGIT,
NFA_CLASS_GRAPH,
NFA_CLASS_LOWER,
NFA_CLASS_PRINT,
NFA_CLASS_PUNCT,
NFA_CLASS_SPACE,
NFA_CLASS_UPPER,
NFA_CLASS_XDIGIT,
NFA_CLASS_TAB,
NFA_CLASS_RETURN,
NFA_CLASS_BACKSPACE,
NFA_CLASS_ESCAPE,
NFA_CLASS_IDENT,
NFA_CLASS_KEYWORD,
NFA_CLASS_FNAME
};
// Keep in sync with classchars.
static int nfa_classcodes[] = {
NFA_ANY, NFA_IDENT, NFA_SIDENT, NFA_KWORD,NFA_SKWORD,
NFA_FNAME, NFA_SFNAME, NFA_PRINT, NFA_SPRINT,
NFA_WHITE, NFA_NWHITE, NFA_DIGIT, NFA_NDIGIT,
NFA_HEX, NFA_NHEX, NFA_OCTAL, NFA_NOCTAL,
NFA_WORD, NFA_NWORD, NFA_HEAD, NFA_NHEAD,
NFA_ALPHA, NFA_NALPHA, NFA_LOWER, NFA_NLOWER,
NFA_UPPER, NFA_NUPPER
};
// Variables only used in nfa_regcomp() and descendants.
static int nfa_re_flags; // re_flags passed to nfa_regcomp()
static int *post_start; // holds the postfix form of r.e.
static int *post_end;
static int *post_ptr;
// Set when the pattern should use the NFA engine.
// E.g. [[:upper:]] only allows 8bit characters for BT engine,
// while NFA engine handles multibyte characters correctly.
static int wants_nfa;
static int nstate; // Number of states in the NFA.
static int istate; // Index in the state vector, used in alloc_state()
// If not NULL match must end at this position
static save_se_T *nfa_endp = NULL;
// 0 for first call to nfa_regmatch(), 1 for recursive call.
static int nfa_ll_index = 0;
static int realloc_post_list(void);
static int nfa_reg(int paren);
#ifdef DEBUG
static void nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent);
#endif
static int match_follows(nfa_state_T *startstate, int depth);
static int failure_chance(nfa_state_T *state, int depth);
// helper functions used when doing re2post() ... regatom() parsing
#define EMIT(c) do { \
if (post_ptr >= post_end && realloc_post_list() == FAIL) \
return FAIL; \
*post_ptr++ = c; \
} while (0)
/*
* Initialize internal variables before NFA compilation.
* Return OK on success, FAIL otherwise.
*/
static int
nfa_regcomp_start(
char_u *expr,
int re_flags) // see vim_regcomp()
{
size_t postfix_size;
int nstate_max;
nstate = 0;
istate = 0;
// A reasonable estimation for maximum size
nstate_max = (int)(STRLEN(expr) + 1) * 25;
// Some items blow up in size, such as [A-z]. Add more space for that.
// When it is still not enough realloc_post_list() will be used.
nstate_max += 1000;
// Size for postfix representation of expr.
postfix_size = sizeof(int) * nstate_max;
post_start = alloc(postfix_size);
if (post_start == NULL)
return FAIL;
post_ptr = post_start;
post_end = post_start + nstate_max;
wants_nfa = FALSE;
rex.nfa_has_zend = FALSE;
rex.nfa_has_backref = FALSE;
// shared with BT engine
regcomp_start(expr, re_flags);
return OK;
}
/*
* Figure out if the NFA state list starts with an anchor, must match at start
* of the line.
*/
static int
nfa_get_reganch(nfa_state_T *start, int depth)
{
nfa_state_T *p = start;
if (depth > 4)
return 0;
while (p != NULL)
{
switch (p->c)
{
case NFA_BOL:
case NFA_BOF:
return 1; // yes!
case NFA_ZSTART:
case NFA_ZEND:
case NFA_CURSOR:
case NFA_VISUAL:
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_NOPEN:
#ifdef FEAT_SYN_HL
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
#endif
p = p->out;
break;
case NFA_SPLIT:
return nfa_get_reganch(p->out, depth + 1)
&& nfa_get_reganch(p->out1, depth + 1);
default:
return 0; // noooo
}
}
return 0;
}
/*
* Figure out if the NFA state list starts with a character which must match
* at start of the match.
*/
static int
nfa_get_regstart(nfa_state_T *start, int depth)
{
nfa_state_T *p = start;
if (depth > 4)
return 0;
while (p != NULL)
{
switch (p->c)
{
// all kinds of zero-width matches
case NFA_BOL:
case NFA_BOF:
case NFA_BOW:
case NFA_EOW:
case NFA_ZSTART:
case NFA_ZEND:
case NFA_CURSOR:
case NFA_VISUAL:
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_MARK:
case NFA_MARK_GT:
case NFA_MARK_LT:
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_NOPEN:
#ifdef FEAT_SYN_HL
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
#endif
p = p->out;
break;
case NFA_SPLIT:
{
int c1 = nfa_get_regstart(p->out, depth + 1);
int c2 = nfa_get_regstart(p->out1, depth + 1);
if (c1 == c2)
return c1; // yes!
return 0;
}
default:
if (p->c > 0)
return p->c; // yes!
return 0;
}
}
return 0;
}
/*
* Figure out if the NFA state list contains just literal text and nothing
* else. If so return a string in allocated memory with what must match after
* regstart. Otherwise return NULL.
*/
static char_u *
nfa_get_match_text(nfa_state_T *start)
{
nfa_state_T *p = start;
int len = 0;
char_u *ret;
char_u *s;
if (p->c != NFA_MOPEN)
return NULL; // just in case
p = p->out;
while (p->c > 0)
{
len += MB_CHAR2LEN(p->c);
p = p->out;
}
if (p->c != NFA_MCLOSE || p->out->c != NFA_MATCH)
return NULL;
ret = alloc(len);
if (ret == NULL)
return NULL;
p = start->out->out; // skip first char, it goes into regstart
s = ret;
while (p->c > 0)
{
if (has_mbyte)
s += (*mb_char2bytes)(p->c, s);
else
*s++ = p->c;
p = p->out;
}
*s = NUL;
return ret;
}
/*
* Allocate more space for post_start. Called when
* running above the estimated number of states.
*/
static int
realloc_post_list(void)
{
int nstate_max = (int)(post_end - post_start);
int new_max;
int *new_start;
int *old_start;
// For weird patterns the number of states can be very high. Increasing by
// 50% seems a reasonable compromise between memory use and speed.
new_max = nstate_max * 3 / 2;
new_start = ALLOC_MULT(int, new_max);
if (new_start == NULL)
return FAIL;
mch_memmove(new_start, post_start, nstate_max * sizeof(int));
old_start = post_start;
post_start = new_start;
post_ptr = new_start + (post_ptr - old_start);
post_end = post_start + new_max;
vim_free(old_start);
return OK;
}
/*
* Search between "start" and "end" and try to recognize a
* character class in expanded form. For example [0-9].
* On success, return the id the character class to be emitted.
* On failure, return 0 (=FAIL)
* Start points to the first char of the range, while end should point
* to the closing brace.
* Keep in mind that 'ignorecase' applies at execution time, thus [a-z] may
* need to be interpreted as [a-zA-Z].
*/
static int
nfa_recognize_char_class(char_u *start, char_u *end, int extra_newl)
{
# define CLASS_not 0x80
# define CLASS_af 0x40
# define CLASS_AF 0x20
# define CLASS_az 0x10
# define CLASS_AZ 0x08
# define CLASS_o7 0x04
# define CLASS_o9 0x02
# define CLASS_underscore 0x01
int newl = FALSE;
char_u *p;
int config = 0;
if (extra_newl == TRUE)
newl = TRUE;
if (*end != ']')
return FAIL;
p = start;
if (*p == '^')
{
config |= CLASS_not;
p++;
}
while (p < end)
{
if (p + 2 < end && *(p + 1) == '-')
{
switch (*p)
{
case '0':
if (*(p + 2) == '9')
{
config |= CLASS_o9;
break;
}
if (*(p + 2) == '7')
{
config |= CLASS_o7;
break;
}
return FAIL;
case 'a':
if (*(p + 2) == 'z')
{
config |= CLASS_az;
break;
}
if (*(p + 2) == 'f')
{
config |= CLASS_af;
break;
}
return FAIL;
case 'A':
if (*(p + 2) == 'Z')
{
config |= CLASS_AZ;
break;
}
if (*(p + 2) == 'F')
{
config |= CLASS_AF;
break;
}
return FAIL;
default:
return FAIL;
}
p += 3;
}
else if (p + 1 < end && *p == '\\' && *(p + 1) == 'n')
{
newl = TRUE;
p += 2;
}
else if (*p == '_')
{
config |= CLASS_underscore;
p ++;
}
else if (*p == '\n')
{
newl = TRUE;
p ++;
}
else
return FAIL;
} // while (p < end)
if (p != end)
return FAIL;
if (newl == TRUE)
extra_newl = NFA_ADD_NL;
switch (config)
{
case CLASS_o9:
return extra_newl + NFA_DIGIT;
case CLASS_not | CLASS_o9:
return extra_newl + NFA_NDIGIT;
case CLASS_af | CLASS_AF | CLASS_o9:
return extra_newl + NFA_HEX;
case CLASS_not | CLASS_af | CLASS_AF | CLASS_o9:
return extra_newl + NFA_NHEX;
case CLASS_o7:
return extra_newl + NFA_OCTAL;
case CLASS_not | CLASS_o7:
return extra_newl + NFA_NOCTAL;
case CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore:
return extra_newl + NFA_WORD;
case CLASS_not | CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore:
return extra_newl + NFA_NWORD;
case CLASS_az | CLASS_AZ | CLASS_underscore:
return extra_newl + NFA_HEAD;
case CLASS_not | CLASS_az | CLASS_AZ | CLASS_underscore:
return extra_newl + NFA_NHEAD;
case CLASS_az | CLASS_AZ:
return extra_newl + NFA_ALPHA;
case CLASS_not | CLASS_az | CLASS_AZ:
return extra_newl + NFA_NALPHA;
case CLASS_az:
return extra_newl + NFA_LOWER_IC;
case CLASS_not | CLASS_az:
return extra_newl + NFA_NLOWER_IC;
case CLASS_AZ:
return extra_newl + NFA_UPPER_IC;
case CLASS_not | CLASS_AZ:
return extra_newl + NFA_NUPPER_IC;
}
return FAIL;
}
/*
* Produce the bytes for equivalence class "c".
* Currently only handles latin1, latin9 and utf-8.
* Emits bytes in postfix notation: 'a,b,NFA_OR,c,NFA_OR' is
* equivalent to 'a OR b OR c'
*
* NOTE! When changing this function, also update reg_equi_class()
*/
static int
nfa_emit_equi_class(int c)
{
#define EMIT2(c) EMIT(c); EMIT(NFA_CONCAT);
if (enc_utf8 || STRCMP(p_enc, "latin1") == 0
|| STRCMP(p_enc, "iso-8859-15") == 0)
{
#define A_grave 0xc0
#define A_acute 0xc1
#define A_circumflex 0xc2
#define A_virguilla 0xc3
#define A_diaeresis 0xc4
#define A_ring 0xc5
#define C_cedilla 0xc7
#define E_grave 0xc8
#define E_acute 0xc9
#define E_circumflex 0xca
#define E_diaeresis 0xcb
#define I_grave 0xcc
#define I_acute 0xcd
#define I_circumflex 0xce
#define I_diaeresis 0xcf
#define N_virguilla 0xd1
#define O_grave 0xd2
#define O_acute 0xd3
#define O_circumflex 0xd4
#define O_virguilla 0xd5
#define O_diaeresis 0xd6
#define O_slash 0xd8
#define U_grave 0xd9
#define U_acute 0xda
#define U_circumflex 0xdb
#define U_diaeresis 0xdc
#define Y_acute 0xdd
#define a_grave 0xe0
#define a_acute 0xe1
#define a_circumflex 0xe2
#define a_virguilla 0xe3
#define a_diaeresis 0xe4
#define a_ring 0xe5
#define c_cedilla 0xe7
#define e_grave 0xe8
#define e_acute 0xe9
#define e_circumflex 0xea
#define e_diaeresis 0xeb
#define i_grave 0xec
#define i_acute 0xed
#define i_circumflex 0xee
#define i_diaeresis 0xef
#define n_virguilla 0xf1
#define o_grave 0xf2
#define o_acute 0xf3
#define o_circumflex 0xf4
#define o_virguilla 0xf5
#define o_diaeresis 0xf6
#define o_slash 0xf8
#define u_grave 0xf9
#define u_acute 0xfa
#define u_circumflex 0xfb
#define u_diaeresis 0xfc
#define y_acute 0xfd
#define y_diaeresis 0xff
switch (c)
{
case 'A': case A_grave: case A_acute: case A_circumflex:
case A_virguilla: case A_diaeresis: case A_ring:
case 0x100: case 0x102: case 0x104: case 0x1cd:
case 0x1de: case 0x1e0: case 0x1fa: case 0x200:
case 0x202: case 0x226: case 0x23a: case 0x1e00:
case 0x1ea0: case 0x1ea2: case 0x1ea4: case 0x1ea6:
case 0x1ea8: case 0x1eaa: case 0x1eac: case 0x1eae:
case 0x1eb0: case 0x1eb2: case 0x1eb4: case 0x1eb6:
EMIT2('A') EMIT2(A_grave) EMIT2(A_acute)
EMIT2(A_circumflex) EMIT2(A_virguilla)
EMIT2(A_diaeresis) EMIT2(A_ring)
EMIT2(0x100) EMIT2(0x102) EMIT2(0x104)
EMIT2(0x1cd) EMIT2(0x1de) EMIT2(0x1e0)
EMIT2(0x1fa) EMIT2(0x200) EMIT2(0x202)
EMIT2(0x226) EMIT2(0x23a) EMIT2(0x1e00)
EMIT2(0x1ea0) EMIT2(0x1ea2) EMIT2(0x1ea4)
EMIT2(0x1ea6) EMIT2(0x1ea8) EMIT2(0x1eaa)
EMIT2(0x1eac) EMIT2(0x1eae) EMIT2(0x1eb0)
EMIT2(0x1eb2) EMIT2(0x1eb6) EMIT2(0x1eb4)
return OK;
case 'B': case 0x181: case 0x243: case 0x1e02:
case 0x1e04: case 0x1e06:
EMIT2('B')
EMIT2(0x181) EMIT2(0x243) EMIT2(0x1e02)
EMIT2(0x1e04) EMIT2(0x1e06)
return OK;
case 'C': case C_cedilla: case 0x106: case 0x108:
case 0x10a: case 0x10c: case 0x187: case 0x23b:
case 0x1e08: case 0xa792:
EMIT2('C') EMIT2(C_cedilla)
EMIT2(0x106) EMIT2(0x108) EMIT2(0x10a)
EMIT2(0x10c) EMIT2(0x187) EMIT2(0x23b)
EMIT2(0x1e08) EMIT2(0xa792)
return OK;
case 'D': case 0x10e: case 0x110: case 0x18a:
case 0x1e0a: case 0x1e0c: case 0x1e0e: case 0x1e10:
case 0x1e12:
EMIT2('D') EMIT2(0x10e) EMIT2(0x110) EMIT2(0x18a)
EMIT2(0x1e0a) EMIT2(0x1e0c) EMIT2(0x1e0e)
EMIT2(0x1e10) EMIT2(0x1e12)
return OK;
case 'E': case E_grave: case E_acute: case E_circumflex:
case E_diaeresis: case 0x112: case 0x114: case 0x116:
case 0x118: case 0x11a: case 0x204: case 0x206:
case 0x228: case 0x246: case 0x1e14: case 0x1e16:
case 0x1e18: case 0x1e1a: case 0x1e1c: case 0x1eb8:
case 0x1eba: case 0x1ebc: case 0x1ebe: case 0x1ec0:
case 0x1ec2: case 0x1ec4: case 0x1ec6:
EMIT2('E') EMIT2(E_grave) EMIT2(E_acute)
EMIT2(E_circumflex) EMIT2(E_diaeresis)
EMIT2(0x112) EMIT2(0x114) EMIT2(0x116)
EMIT2(0x118) EMIT2(0x11a) EMIT2(0x204)
EMIT2(0x206) EMIT2(0x228) EMIT2(0x246)
EMIT2(0x1e14) EMIT2(0x1e16) EMIT2(0x1e18)
EMIT2(0x1e1a) EMIT2(0x1e1c) EMIT2(0x1eb8)
EMIT2(0x1eba) EMIT2(0x1ebc) EMIT2(0x1ebe)
EMIT2(0x1ec0) EMIT2(0x1ec2) EMIT2(0x1ec4)
EMIT2(0x1ec6)
return OK;
case 'F': case 0x191: case 0x1e1e: case 0xa798:
EMIT2('F') EMIT2(0x191) EMIT2(0x1e1e) EMIT2(0xa798)
return OK;
case 'G': case 0x11c: case 0x11e: case 0x120:
case 0x122: case 0x193: case 0x1e4: case 0x1e6:
case 0x1f4: case 0x1e20: case 0xa7a0:
EMIT2('G') EMIT2(0x11c) EMIT2(0x11e) EMIT2(0x120)
EMIT2(0x122) EMIT2(0x193) EMIT2(0x1e4)
EMIT2(0x1e6) EMIT2(0x1f4) EMIT2(0x1e20)
EMIT2(0xa7a0)
return OK;
case 'H': case 0x124: case 0x126: case 0x21e:
case 0x1e22: case 0x1e24: case 0x1e26: case 0x1e28:
case 0x1e2a: case 0x2c67:
EMIT2('H') EMIT2(0x124) EMIT2(0x126) EMIT2(0x21e)
EMIT2(0x1e22) EMIT2(0x1e24) EMIT2(0x1e26)
EMIT2(0x1e28) EMIT2(0x1e2a) EMIT2(0x2c67)
return OK;
case 'I': case I_grave: case I_acute: case I_circumflex:
case I_diaeresis: case 0x128: case 0x12a: case 0x12c:
case 0x12e: case 0x130: case 0x197: case 0x1cf:
case 0x208: case 0x20a: case 0x1e2c: case 0x1e2e:
case 0x1ec8: case 0x1eca:
EMIT2('I') EMIT2(I_grave) EMIT2(I_acute)
EMIT2(I_circumflex) EMIT2(I_diaeresis)
EMIT2(0x128) EMIT2(0x12a) EMIT2(0x12c)
EMIT2(0x12e) EMIT2(0x130) EMIT2(0x197)
EMIT2(0x1cf) EMIT2(0x208) EMIT2(0x20a)
EMIT2(0x1e2c) EMIT2(0x1e2e) EMIT2(0x1ec8)
EMIT2(0x1eca)
return OK;
case 'J': case 0x134: case 0x248:
EMIT2('J') EMIT2(0x134) EMIT2(0x248)
return OK;
case 'K': case 0x136: case 0x198: case 0x1e8: case 0x1e30:
case 0x1e32: case 0x1e34: case 0x2c69: case 0xa740:
EMIT2('K') EMIT2(0x136) EMIT2(0x198) EMIT2(0x1e8)
EMIT2(0x1e30) EMIT2(0x1e32) EMIT2(0x1e34)
EMIT2(0x2c69) EMIT2(0xa740)
return OK;
case 'L': case 0x139: case 0x13b: case 0x13d:
case 0x13f: case 0x141: case 0x23d: case 0x1e36:
case 0x1e38: case 0x1e3a: case 0x1e3c: case 0x2c60:
EMIT2('L') EMIT2(0x139) EMIT2(0x13b)
EMIT2(0x13d) EMIT2(0x13f) EMIT2(0x141)
EMIT2(0x23d) EMIT2(0x1e36) EMIT2(0x1e38)
EMIT2(0x1e3a) EMIT2(0x1e3c) EMIT2(0x2c60)
return OK;
case 'M': case 0x1e3e: case 0x1e40: case 0x1e42:
EMIT2('M') EMIT2(0x1e3e) EMIT2(0x1e40)
EMIT2(0x1e42)
return OK;
case 'N': case N_virguilla:
case 0x143: case 0x145: case 0x147: case 0x1f8:
case 0x1e44: case 0x1e46: case 0x1e48: case 0x1e4a:
case 0xa7a4:
EMIT2('N') EMIT2(N_virguilla)
EMIT2(0x143) EMIT2(0x145) EMIT2(0x147)
EMIT2(0x1f8) EMIT2(0x1e44) EMIT2(0x1e46)
EMIT2(0x1e48) EMIT2(0x1e4a) EMIT2(0xa7a4)
return OK;
case 'O': case O_grave: case O_acute: case O_circumflex:
case O_virguilla: case O_diaeresis: case O_slash:
case 0x14c: case 0x14e: case 0x150: case 0x19f:
case 0x1a0: case 0x1d1: case 0x1ea: case 0x1ec:
case 0x1fe: case 0x20c: case 0x20e: case 0x22a:
case 0x22c: case 0x22e: case 0x230: case 0x1e4c:
case 0x1e4e: case 0x1e50: case 0x1e52: case 0x1ecc:
case 0x1ece: case 0x1ed0: case 0x1ed2: case 0x1ed4:
case 0x1ed6: case 0x1ed8: case 0x1eda: case 0x1edc:
case 0x1ede: case 0x1ee0: case 0x1ee2:
EMIT2('O') EMIT2(O_grave) EMIT2(O_acute)
EMIT2(O_circumflex) EMIT2(O_virguilla)
EMIT2(O_diaeresis) EMIT2(O_slash)
EMIT2(0x14c) EMIT2(0x14e) EMIT2(0x150)
EMIT2(0x19f) EMIT2(0x1a0) EMIT2(0x1d1)
EMIT2(0x1ea) EMIT2(0x1ec) EMIT2(0x1fe)
EMIT2(0x20c) EMIT2(0x20e) EMIT2(0x22a)
EMIT2(0x22c) EMIT2(0x22e) EMIT2(0x230)
EMIT2(0x1e4c) EMIT2(0x1e4e) EMIT2(0x1e50)
EMIT2(0x1e52) EMIT2(0x1ecc) EMIT2(0x1ece)
EMIT2(0x1ed0) EMIT2(0x1ed2) EMIT2(0x1ed4)
EMIT2(0x1ed6) EMIT2(0x1ed8) EMIT2(0x1eda)
EMIT2(0x1edc) EMIT2(0x1ede) EMIT2(0x1ee0)
EMIT2(0x1ee2)
return OK;
case 'P': case 0x1a4: case 0x1e54: case 0x1e56: case 0x2c63:
EMIT2('P') EMIT2(0x1a4) EMIT2(0x1e54) EMIT2(0x1e56)
EMIT2(0x2c63)
return OK;
case 'Q': case 0x24a:
EMIT2('Q') EMIT2(0x24a)
return OK;
case 'R': case 0x154: case 0x156: case 0x158: case 0x210:
case 0x212: case 0x24c: case 0x1e58: case 0x1e5a:
case 0x1e5c: case 0x1e5e: case 0x2c64: case 0xa7a6:
EMIT2('R') EMIT2(0x154) EMIT2(0x156) EMIT2(0x158)
EMIT2(0x210) EMIT2(0x212) EMIT2(0x24c) EMIT2(0x1e58)
EMIT2(0x1e5a) EMIT2(0x1e5c) EMIT2(0x1e5e) EMIT2(0x2c64)
EMIT2(0xa7a6)
return OK;
case 'S': case 0x15a: case 0x15c: case 0x15e: case 0x160:
case 0x218: case 0x1e60: case 0x1e62: case 0x1e64:
case 0x1e66: case 0x1e68: case 0x2c7e: case 0xa7a8:
EMIT2('S') EMIT2(0x15a) EMIT2(0x15c) EMIT2(0x15e)
EMIT2(0x160) EMIT2(0x218) EMIT2(0x1e60) EMIT2(0x1e62)
EMIT2(0x1e64) EMIT2(0x1e66) EMIT2(0x1e68) EMIT2(0x2c7e)
EMIT2(0xa7a8)
return OK;
case 'T': case 0x162: case 0x164: case 0x166: case 0x1ac:
case 0x1ae: case 0x21a: case 0x23e: case 0x1e6a: case 0x1e6c:
case 0x1e6e: case 0x1e70:
EMIT2('T') EMIT2(0x162) EMIT2(0x164) EMIT2(0x166)
EMIT2(0x1ac) EMIT2(0x1ae) EMIT2(0x23e) EMIT2(0x21a)
EMIT2(0x1e6a) EMIT2(0x1e6c) EMIT2(0x1e6e) EMIT2(0x1e70)
return OK;
case 'U': case U_grave: case U_acute: case U_diaeresis:
case U_circumflex: case 0x168: case 0x16a: case 0x16c:
case 0x16e: case 0x170: case 0x172: case 0x1af:
case 0x1d3: case 0x1d5: case 0x1d7: case 0x1d9:
case 0x1db: case 0x214: case 0x216: case 0x244:
case 0x1e72: case 0x1e74: case 0x1e76: case 0x1e78:
case 0x1e7a: case 0x1ee4: case 0x1ee6: case 0x1ee8:
case 0x1eea: case 0x1eec: case 0x1eee: case 0x1ef0:
EMIT2('U') EMIT2(U_grave) EMIT2(U_acute)
EMIT2(U_diaeresis) EMIT2(U_circumflex)
EMIT2(0x168) EMIT2(0x16a)
EMIT2(0x16c) EMIT2(0x16e) EMIT2(0x170)
EMIT2(0x172) EMIT2(0x1af) EMIT2(0x1d3)
EMIT2(0x1d5) EMIT2(0x1d7) EMIT2(0x1d9)
EMIT2(0x1db) EMIT2(0x214) EMIT2(0x216)
EMIT2(0x244) EMIT2(0x1e72) EMIT2(0x1e74)
EMIT2(0x1e76) EMIT2(0x1e78) EMIT2(0x1e7a)
EMIT2(0x1ee4) EMIT2(0x1ee6) EMIT2(0x1ee8)
EMIT2(0x1eea) EMIT2(0x1eec) EMIT2(0x1eee)
EMIT2(0x1ef0)
return OK;
case 'V': case 0x1b2: case 0x1e7c: case 0x1e7e:
EMIT2('V') EMIT2(0x1b2) EMIT2(0x1e7c) EMIT2(0x1e7e)
return OK;
case 'W': case 0x174: case 0x1e80: case 0x1e82: case 0x1e84:
case 0x1e86: case 0x1e88:
EMIT2('W') EMIT2(0x174) EMIT2(0x1e80) EMIT2(0x1e82)
EMIT2(0x1e84) EMIT2(0x1e86) EMIT2(0x1e88)
return OK;
case 'X': case 0x1e8a: case 0x1e8c:
EMIT2('X') EMIT2(0x1e8a) EMIT2(0x1e8c)
return OK;
case 'Y': case Y_acute: case 0x176: case 0x178:
case 0x1b3: case 0x232: case 0x24e: case 0x1e8e:
case 0x1ef2: case 0x1ef4: case 0x1ef6: case 0x1ef8:
EMIT2('Y') EMIT2(Y_acute)
EMIT2(0x176) EMIT2(0x178) EMIT2(0x1b3)
EMIT2(0x232) EMIT2(0x24e) EMIT2(0x1e8e)
EMIT2(0x1ef2) EMIT2(0x1ef4) EMIT2(0x1ef6)
EMIT2(0x1ef8)
return OK;
case 'Z': case 0x179: case 0x17b: case 0x17d:
case 0x1b5: case 0x1e90: case 0x1e92: case 0x1e94:
case 0x2c6b:
EMIT2('Z') EMIT2(0x179) EMIT2(0x17b) EMIT2(0x17d)
EMIT2(0x1b5) EMIT2(0x1e90) EMIT2(0x1e92)
EMIT2(0x1e94) EMIT2(0x2c6b)
return OK;
case 'a': case a_grave: case a_acute: case a_circumflex:
case a_virguilla: case a_diaeresis: case a_ring:
case 0x101: case 0x103: case 0x105: case 0x1ce:
case 0x1df: case 0x1e1: case 0x1fb: case 0x201:
case 0x203: case 0x227: case 0x1d8f: case 0x1e01:
case 0x1e9a: case 0x1ea1: case 0x1ea3: case 0x1ea5:
case 0x1ea7: case 0x1ea9: case 0x1eab: case 0x1ead:
case 0x1eaf: case 0x1eb1: case 0x1eb3: case 0x1eb5:
case 0x1eb7: case 0x2c65:
EMIT2('a') EMIT2(a_grave) EMIT2(a_acute)
EMIT2(a_circumflex) EMIT2(a_virguilla)
EMIT2(a_diaeresis) EMIT2(a_ring)
EMIT2(0x101) EMIT2(0x103) EMIT2(0x105)
EMIT2(0x1ce) EMIT2(0x1df) EMIT2(0x1e1)
EMIT2(0x1fb) EMIT2(0x201) EMIT2(0x203)
EMIT2(0x227) EMIT2(0x1d8f) EMIT2(0x1e01)
EMIT2(0x1e9a) EMIT2(0x1ea1) EMIT2(0x1ea3)
EMIT2(0x1ea5) EMIT2(0x1ea7) EMIT2(0x1ea9)
EMIT2(0x1eab) EMIT2(0x1ead) EMIT2(0x1eaf)
EMIT2(0x1eb1) EMIT2(0x1eb3) EMIT2(0x1eb5)
EMIT2(0x1eb7) EMIT2(0x2c65)
return OK;
case 'b': case 0x180: case 0x253: case 0x1d6c: case 0x1d80:
case 0x1e03: case 0x1e05: case 0x1e07:
EMIT2('b') EMIT2(0x180) EMIT2(0x253) EMIT2(0x1d6c)
EMIT2(0x1d80) EMIT2(0x1e03) EMIT2(0x1e05) EMIT2(0x1e07)
return OK;
case 'c': case c_cedilla: case 0x107: case 0x109: case 0x10b:
case 0x10d: case 0x188: case 0x23c: case 0x1e09: case 0xa793:
case 0xa794:
EMIT2('c') EMIT2(c_cedilla)
EMIT2(0x107) EMIT2(0x109) EMIT2(0x10b)
EMIT2(0x10d) EMIT2(0x188) EMIT2(0x23c)
EMIT2(0x1e09) EMIT2(0xa793) EMIT2(0xa794)
return OK;
case 'd': case 0x10f: case 0x111: case 0x257: case 0x1d6d:
case 0x1d81: case 0x1d91: case 0x1e0b: case 0x1e0d: case 0x1e0f:
case 0x1e11: case 0x1e13:
EMIT2('d') EMIT2(0x10f) EMIT2(0x111)
EMIT2(0x257) EMIT2(0x1d6d) EMIT2(0x1d81)
EMIT2(0x1d91) EMIT2(0x1e0b) EMIT2(0x1e0d)
EMIT2(0x1e0f) EMIT2(0x1e11) EMIT2(0x1e13)
return OK;
case 'e': case e_grave: case e_acute: case e_circumflex:
case e_diaeresis: case 0x113: case 0x115: case 0x117:
case 0x119: case 0x11b: case 0x205: case 0x207:
case 0x229: case 0x247: case 0x1d92: case 0x1e15:
case 0x1e17: case 0x1e19: case 0x1e1b: case 0x1e1d:
case 0x1eb9: case 0x1ebb: case 0x1ebd: case 0x1ebf:
case 0x1ec1: case 0x1ec3: case 0x1ec5: case 0x1ec7:
EMIT2('e') EMIT2(e_grave) EMIT2(e_acute)
EMIT2(e_circumflex) EMIT2(e_diaeresis)
EMIT2(0x113) EMIT2(0x115)
EMIT2(0x117) EMIT2(0x119) EMIT2(0x11b)
EMIT2(0x205) EMIT2(0x207) EMIT2(0x229)
EMIT2(0x247) EMIT2(0x1d92) EMIT2(0x1e15)
EMIT2(0x1e17) EMIT2(0x1e19) EMIT2(0x1e1b)
EMIT2(0x1e1d) EMIT2(0x1eb9) EMIT2(0x1ebb)
EMIT2(0x1ebd) EMIT2(0x1ebf) EMIT2(0x1ec1)
EMIT2(0x1ec3) EMIT2(0x1ec5) EMIT2(0x1ec7)
return OK;
case 'f': case 0x192: case 0x1d6e: case 0x1d82:
case 0x1e1f: case 0xa799:
EMIT2('f') EMIT2(0x192) EMIT2(0x1d6e) EMIT2(0x1d82)
EMIT2(0x1e1f) EMIT2(0xa799)
return OK;
case 'g': case 0x11d: case 0x11f: case 0x121: case 0x123:
case 0x1e5: case 0x1e7: case 0x1f5: case 0x260: case 0x1d83:
case 0x1e21: case 0xa7a1:
EMIT2('g') EMIT2(0x11d) EMIT2(0x11f) EMIT2(0x121)
EMIT2(0x123) EMIT2(0x1e5) EMIT2(0x1e7)
EMIT2(0x1f5) EMIT2(0x260) EMIT2(0x1d83)
EMIT2(0x1e21) EMIT2(0xa7a1)
return OK;
case 'h': case 0x125: case 0x127: case 0x21f: case 0x1e23:
case 0x1e25: case 0x1e27: case 0x1e29: case 0x1e2b:
case 0x1e96: case 0x2c68: case 0xa795:
EMIT2('h') EMIT2(0x125) EMIT2(0x127) EMIT2(0x21f)
EMIT2(0x1e23) EMIT2(0x1e25) EMIT2(0x1e27)
EMIT2(0x1e29) EMIT2(0x1e2b) EMIT2(0x1e96)
EMIT2(0x2c68) EMIT2(0xa795)
return OK;
case 'i': case i_grave: case i_acute: case i_circumflex:
case i_diaeresis: case 0x129: case 0x12b: case 0x12d:
case 0x12f: case 0x1d0: case 0x209: case 0x20b:
case 0x268: case 0x1d96: case 0x1e2d: case 0x1e2f:
case 0x1ec9: case 0x1ecb:
EMIT2('i') EMIT2(i_grave) EMIT2(i_acute)
EMIT2(i_circumflex) EMIT2(i_diaeresis)
EMIT2(0x129) EMIT2(0x12b) EMIT2(0x12d)
EMIT2(0x12f) EMIT2(0x1d0) EMIT2(0x209)
EMIT2(0x20b) EMIT2(0x268) EMIT2(0x1d96)
EMIT2(0x1e2d) EMIT2(0x1e2f) EMIT2(0x1ec9)
EMIT2(0x1ecb) EMIT2(0x1ecb)
return OK;
case 'j': case 0x135: case 0x1f0: case 0x249:
EMIT2('j') EMIT2(0x135) EMIT2(0x1f0) EMIT2(0x249)
return OK;
case 'k': case 0x137: case 0x199: case 0x1e9: case 0x1d84:
case 0x1e31: case 0x1e33: case 0x1e35: case 0x2c6a: case 0xa741:
EMIT2('k') EMIT2(0x137) EMIT2(0x199) EMIT2(0x1e9)
EMIT2(0x1d84) EMIT2(0x1e31) EMIT2(0x1e33)
EMIT2(0x1e35) EMIT2(0x2c6a) EMIT2(0xa741)
return OK;
case 'l': case 0x13a: case 0x13c: case 0x13e: case 0x140:
case 0x142: case 0x19a: case 0x1e37: case 0x1e39: case 0x1e3b:
case 0x1e3d: case 0x2c61:
EMIT2('l') EMIT2(0x13a) EMIT2(0x13c)
EMIT2(0x13e) EMIT2(0x140) EMIT2(0x142)
EMIT2(0x19a) EMIT2(0x1e37) EMIT2(0x1e39)
EMIT2(0x1e3b) EMIT2(0x1e3d) EMIT2(0x2c61)
return OK;
case 'm': case 0x1d6f: case 0x1e3f: case 0x1e41: case 0x1e43:
EMIT2('m') EMIT2(0x1d6f) EMIT2(0x1e3f)
EMIT2(0x1e41) EMIT2(0x1e43)
return OK;
case 'n': case n_virguilla: case 0x144: case 0x146: case 0x148:
case 0x149: case 0x1f9: case 0x1d70: case 0x1d87: case 0x1e45:
case 0x1e47: case 0x1e49: case 0x1e4b: case 0xa7a5:
EMIT2('n') EMIT2(n_virguilla)
EMIT2(0x144) EMIT2(0x146) EMIT2(0x148)
EMIT2(0x149) EMIT2(0x1f9) EMIT2(0x1d70)
EMIT2(0x1d87) EMIT2(0x1e45) EMIT2(0x1e47)
EMIT2(0x1e49) EMIT2(0x1e4b) EMIT2(0xa7a5)
return OK;
case 'o': case o_grave: case o_acute: case o_circumflex:
case o_virguilla: case o_diaeresis: case o_slash:
case 0x14d: case 0x14f: case 0x151: case 0x1a1:
case 0x1d2: case 0x1eb: case 0x1ed: case 0x1ff:
case 0x20d: case 0x20f: case 0x22b: case 0x22d:
case 0x22f: case 0x231: case 0x275: case 0x1e4d:
case 0x1e4f: case 0x1e51: case 0x1e53: case 0x1ecd:
case 0x1ecf: case 0x1ed1: case 0x1ed3: case 0x1ed5:
case 0x1ed7: case 0x1ed9: case 0x1edb: case 0x1edd:
case 0x1edf: case 0x1ee1: case 0x1ee3:
EMIT2('o') EMIT2(o_grave) EMIT2(o_acute)
EMIT2(o_circumflex) EMIT2(o_virguilla)
EMIT2(o_diaeresis) EMIT2(o_slash)
EMIT2(0x14d) EMIT2(0x14f) EMIT2(0x151)
EMIT2(0x1a1) EMIT2(0x1d2) EMIT2(0x1eb)
EMIT2(0x1ed) EMIT2(0x1ff) EMIT2(0x20d)
EMIT2(0x20f) EMIT2(0x22b) EMIT2(0x22d)
EMIT2(0x22f) EMIT2(0x231) EMIT2(0x275)
EMIT2(0x1e4d) EMIT2(0x1e4f) EMIT2(0x1e51)
EMIT2(0x1e53) EMIT2(0x1ecd) EMIT2(0x1ecf)
EMIT2(0x1ed1) EMIT2(0x1ed3) EMIT2(0x1ed5)
EMIT2(0x1ed7) EMIT2(0x1ed9) EMIT2(0x1edb)
EMIT2(0x1edd) EMIT2(0x1edf) EMIT2(0x1ee1)
EMIT2(0x1ee3)
return OK;
case 'p': case 0x1a5: case 0x1d71: case 0x1d7d: case 0x1d88:
case 0x1e55: case 0x1e57:
EMIT2('p') EMIT2(0x1a5) EMIT2(0x1d71) EMIT2(0x1d7d)
EMIT2(0x1d88) EMIT2(0x1e55) EMIT2(0x1e57)
return OK;
case 'q': case 0x24b: case 0x2a0:
EMIT2('q') EMIT2(0x24b) EMIT2(0x2a0)
return OK;
case 'r': case 0x155: case 0x157: case 0x159: case 0x211:
case 0x213: case 0x24d: case 0x27d: case 0x1d72: case 0x1d73:
case 0x1d89: case 0x1e59: case 0x1e5b: case 0x1e5d: case 0x1e5f:
case 0xa7a7:
EMIT2('r') EMIT2(0x155) EMIT2(0x157) EMIT2(0x159)
EMIT2(0x211) EMIT2(0x213) EMIT2(0x24d) EMIT2(0x27d)
EMIT2(0x1d72) EMIT2(0x1d73) EMIT2(0x1d89) EMIT2(0x1e59)
EMIT2(0x1e5b) EMIT2(0x1e5d) EMIT2(0x1e5f) EMIT2(0xa7a7)
return OK;
case 's': case 0x15b: case 0x15d: case 0x15f: case 0x161:
case 0x219: case 0x23f: case 0x1d74: case 0x1d8a: case 0x1e61:
case 0x1e63: case 0x1e65: case 0x1e67: case 0x1e69: case 0xa7a9:
EMIT2('s') EMIT2(0x15b) EMIT2(0x15d) EMIT2(0x15f)
EMIT2(0x161) EMIT2(0x219) EMIT2(0x23f) EMIT2(0x1d74)
EMIT2(0x1d8a) EMIT2(0x1e61) EMIT2(0x1e63) EMIT2(0x1e65)
EMIT2(0x1e67) EMIT2(0x1e69) EMIT2(0xa7a9)
return OK;
case 't': case 0x163: case 0x165: case 0x167: case 0x1ab:
case 0x1ad: case 0x21b: case 0x288: case 0x1d75: case 0x1e6b:
case 0x1e6d: case 0x1e6f: case 0x1e71: case 0x1e97: case 0x2c66:
EMIT2('t') EMIT2(0x163) EMIT2(0x165) EMIT2(0x167)
EMIT2(0x1ab) EMIT2(0x1ad) EMIT2(0x21b) EMIT2(0x288)
EMIT2(0x1d75) EMIT2(0x1e6b) EMIT2(0x1e6d) EMIT2(0x1e6f)
EMIT2(0x1e71) EMIT2(0x1e97) EMIT2(0x2c66)
return OK;
case 'u': case u_grave: case u_acute: case u_circumflex:
case u_diaeresis: case 0x169: case 0x16b: case 0x16d:
case 0x16f: case 0x171: case 0x173: case 0x1b0: case 0x1d4:
case 0x1d6: case 0x1d8: case 0x1da: case 0x1dc: case 0x215:
case 0x217: case 0x289: case 0x1d7e: case 0x1d99: case 0x1e73:
case 0x1e75: case 0x1e77: case 0x1e79: case 0x1e7b:
case 0x1ee5: case 0x1ee7: case 0x1ee9: case 0x1eeb:
case 0x1eed: case 0x1eef: case 0x1ef1:
EMIT2('u') EMIT2(u_grave) EMIT2(u_acute)
EMIT2(u_circumflex) EMIT2(u_diaeresis)
EMIT2(0x169) EMIT2(0x16b)
EMIT2(0x16d) EMIT2(0x16f) EMIT2(0x171)
EMIT2(0x173) EMIT2(0x1d6) EMIT2(0x1d8)
EMIT2(0x215) EMIT2(0x217) EMIT2(0x1b0)
EMIT2(0x1d4) EMIT2(0x1da) EMIT2(0x1dc)
EMIT2(0x289) EMIT2(0x1e73) EMIT2(0x1d7e)
EMIT2(0x1d99) EMIT2(0x1e75) EMIT2(0x1e77)
EMIT2(0x1e79) EMIT2(0x1e7b) EMIT2(0x1ee5)
EMIT2(0x1ee7) EMIT2(0x1ee9) EMIT2(0x1eeb)
EMIT2(0x1eed) EMIT2(0x1eef) EMIT2(0x1ef1)
return OK;
case 'v': case 0x28b: case 0x1d8c: case 0x1e7d: case 0x1e7f:
EMIT2('v') EMIT2(0x28b) EMIT2(0x1d8c) EMIT2(0x1e7d)
EMIT2(0x1e7f)
return OK;
case 'w': case 0x175: case 0x1e81: case 0x1e83: case 0x1e85:
case 0x1e87: case 0x1e89: case 0x1e98:
EMIT2('w') EMIT2(0x175) EMIT2(0x1e81) EMIT2(0x1e83)
EMIT2(0x1e85) EMIT2(0x1e87) EMIT2(0x1e89) EMIT2(0x1e98)
return OK;
case 'x': case 0x1e8b: case 0x1e8d:
EMIT2('x') EMIT2(0x1e8b) EMIT2(0x1e8d)
return OK;
case 'y': case y_acute: case y_diaeresis: case 0x177:
case 0x1b4: case 0x233: case 0x24f: case 0x1e8f:
case 0x1e99: case 0x1ef3: case 0x1ef5: case 0x1ef7:
case 0x1ef9:
EMIT2('y') EMIT2(y_acute) EMIT2(y_diaeresis)
EMIT2(0x177) EMIT2(0x1b4) EMIT2(0x233) EMIT2(0x24f)
EMIT2(0x1e8f) EMIT2(0x1e99) EMIT2(0x1ef3)
EMIT2(0x1ef5) EMIT2(0x1ef7) EMIT2(0x1ef9)
return OK;
case 'z': case 0x17a: case 0x17c: case 0x17e: case 0x1b6:
case 0x1d76: case 0x1d8e: case 0x1e91: case 0x1e93:
case 0x1e95: case 0x2c6c:
EMIT2('z') EMIT2(0x17a) EMIT2(0x17c) EMIT2(0x17e)
EMIT2(0x1b6) EMIT2(0x1d76) EMIT2(0x1d8e) EMIT2(0x1e91)
EMIT2(0x1e93) EMIT2(0x1e95) EMIT2(0x2c6c)
return OK;
// default: character itself
}
}
EMIT2(c);
return OK;
#undef EMIT2
}
/*
* Code to parse regular expression.
*
* We try to reuse parsing functions in regexp.c to
* minimize surprise and keep the syntax consistent.
*/
/*
* Parse the lowest level.
*
* An atom can be one of a long list of items. Many atoms match one character
* in the text. It is often an ordinary character or a character class.
* Braces can be used to make a pattern into an atom. The "\z(\)" construct
* is only for syntax highlighting.
*
* atom ::= ordinary-atom
* or \( pattern \)
* or \%( pattern \)
* or \z( pattern \)
*/
static int
nfa_regatom(void)
{
int c;
int charclass;
int equiclass;
int collclass;
int got_coll_char;
char_u *p;
char_u *endp;
char_u *old_regparse = regparse;
int extra = 0;
int emit_range;
int negated;
int result;
int startc = -1;
int save_prev_at_start = prev_at_start;
c = getchr();
switch (c)
{
case NUL:
EMSG_RET_FAIL(_(e_nfa_regexp_end_encountered_prematurely));
case Magic('^'):
EMIT(NFA_BOL);
break;
case Magic('$'):
EMIT(NFA_EOL);
#if defined(FEAT_SYN_HL) || defined(PROTO)
had_eol = TRUE;
#endif
break;
case Magic('<'):
EMIT(NFA_BOW);
break;
case Magic('>'):
EMIT(NFA_EOW);
break;
case Magic('_'):
c = no_Magic(getchr());
if (c == NUL)
EMSG_RET_FAIL(_(e_nfa_regexp_end_encountered_prematurely));
if (c == '^') // "\_^" is start-of-line
{
EMIT(NFA_BOL);
break;
}
if (c == '$') // "\_$" is end-of-line
{
EMIT(NFA_EOL);
#if defined(FEAT_SYN_HL) || defined(PROTO)
had_eol = TRUE;
#endif
break;
}
extra = NFA_ADD_NL;
// "\_[" is collection plus newline
if (c == '[')
goto collection;
// "\_x" is character class plus newline
// FALLTHROUGH
/*
* Character classes.
*/
case Magic('.'):
case Magic('i'):
case Magic('I'):
case Magic('k'):
case Magic('K'):
case Magic('f'):
case Magic('F'):
case Magic('p'):
case Magic('P'):
case Magic('s'):
case Magic('S'):
case Magic('d'):
case Magic('D'):
case Magic('x'):
case Magic('X'):
case Magic('o'):
case Magic('O'):
case Magic('w'):
case Magic('W'):
case Magic('h'):
case Magic('H'):
case Magic('a'):
case Magic('A'):
case Magic('l'):
case Magic('L'):
case Magic('u'):
case Magic('U'):
p = vim_strchr(classchars, no_Magic(c));
if (p == NULL)
{
if (extra == NFA_ADD_NL)
{
semsg(_(e_nfa_regexp_invalid_character_class_nr), c);
rc_did_emsg = TRUE;
return FAIL;
}
siemsg("Unknown character class char: %d", c);
return FAIL;
}
// When '.' is followed by a composing char ignore the dot, so that
// the composing char is matched here.
if (enc_utf8 && c == Magic('.') && utf_iscomposing(peekchr()))
{
old_regparse = regparse;
c = getchr();
goto nfa_do_multibyte;
}
EMIT(nfa_classcodes[p - classchars]);
if (extra == NFA_ADD_NL)
{
EMIT(NFA_NEWL);
EMIT(NFA_OR);
regflags |= RF_HASNL;
}
break;
case Magic('n'):
if (reg_string)
// In a string "\n" matches a newline character.
EMIT(NL);
else
{
// In buffer text "\n" matches the end of a line.
EMIT(NFA_NEWL);
regflags |= RF_HASNL;
}
break;
case Magic('('):
if (nfa_reg(REG_PAREN) == FAIL)
return FAIL; // cascaded error
break;
case Magic('|'):
case Magic('&'):
case Magic(')'):
semsg(_(e_nfa_regexp_misplaced_chr), no_Magic(c));
return FAIL;
case Magic('='):
case Magic('?'):
case Magic('+'):
case Magic('@'):
case Magic('*'):
case Magic('{'):
// these should follow an atom, not form an atom
semsg(_(e_nfa_regexp_misplaced_chr), no_Magic(c));
return FAIL;
case Magic('~'):
{
char_u *lp;
// Previous substitute pattern.
// Generated as "\%(pattern\)".
if (reg_prev_sub == NULL)
{
emsg(_(e_no_previous_substitute_regular_expression));
return FAIL;
}
for (lp = reg_prev_sub; *lp != NUL; MB_CPTR_ADV(lp))
{
EMIT(PTR2CHAR(lp));
if (lp != reg_prev_sub)
EMIT(NFA_CONCAT);
}
EMIT(NFA_NOPEN);
break;
}
case Magic('1'):
case Magic('2'):
case Magic('3'):
case Magic('4'):
case Magic('5'):
case Magic('6'):
case Magic('7'):
case Magic('8'):
case Magic('9'):
{
int refnum = no_Magic(c) - '1';
if (!seen_endbrace(refnum + 1))
return FAIL;
EMIT(NFA_BACKREF1 + refnum);
rex.nfa_has_backref = TRUE;
}
break;
case Magic('z'):
c = no_Magic(getchr());
switch (c)
{
case 's':
EMIT(NFA_ZSTART);
if (re_mult_next("\\zs") == FAIL)
return FAIL;
break;
case 'e':
EMIT(NFA_ZEND);
rex.nfa_has_zend = TRUE;
if (re_mult_next("\\ze") == FAIL)
return FAIL;
break;
#ifdef FEAT_SYN_HL
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
// \z1...\z9
if ((reg_do_extmatch & REX_USE) == 0)
EMSG_RET_FAIL(_(e_z1_z9_not_allowed_here));
EMIT(NFA_ZREF1 + (no_Magic(c) - '1'));
// No need to set rex.nfa_has_backref, the sub-matches don't
// change when \z1 .. \z9 matches or not.
re_has_z = REX_USE;
break;
case '(':
// \z(
if ((reg_do_extmatch & REX_SET) == 0)
EMSG_RET_FAIL(_(e_z_not_allowed_here));
if (nfa_reg(REG_ZPAREN) == FAIL)
return FAIL; // cascaded error
re_has_z = REX_SET;
break;
#endif
default:
semsg(_(e_nfa_regexp_unknown_operator_z_chr), no_Magic(c));
return FAIL;
}
break;
case Magic('%'):
c = no_Magic(getchr());
switch (c)
{
// () without a back reference
case '(':
if (nfa_reg(REG_NPAREN) == FAIL)
return FAIL;
EMIT(NFA_NOPEN);
break;
case 'd': // %d123 decimal
case 'o': // %o123 octal
case 'x': // %xab hex 2
case 'u': // %uabcd hex 4
case 'U': // %U1234abcd hex 8
{
long nr;
switch (c)
{
case 'd': nr = getdecchrs(); break;
case 'o': nr = getoctchrs(); break;
case 'x': nr = gethexchrs(2); break;
case 'u': nr = gethexchrs(4); break;
case 'U': nr = gethexchrs(8); break;
default: nr = -1; break;
}
if (nr < 0 || nr > INT_MAX)
EMSG2_RET_FAIL(_(e_invalid_character_after_str_2),
reg_magic == MAGIC_ALL);
// A NUL is stored in the text as NL
// TODO: what if a composing character follows?
EMIT(nr == 0 ? 0x0a : nr);
}
break;
// Catch \%^ and \%$ regardless of where they appear in the
// pattern -- regardless of whether or not it makes sense.
case '^':
EMIT(NFA_BOF);
break;
case '$':
EMIT(NFA_EOF);
break;
case '#':
if (regparse[0] == '=' && regparse[1] >= 48
&& regparse[1] <= 50)
{
// misplaced \%#=1
semsg(_(e_atom_engine_must_be_at_start_of_pattern),
regparse[1]);
return FAIL;
}
EMIT(NFA_CURSOR);
break;
case 'V':
EMIT(NFA_VISUAL);
break;
case 'C':
EMIT(NFA_ANY_COMPOSING);
break;
case '[':
{
int n;
// \%[abc]
for (n = 0; (c = peekchr()) != ']'; ++n)
{
if (c == NUL)
EMSG2_RET_FAIL(_(e_missing_sb_after_str),
reg_magic == MAGIC_ALL);
// recursive call!
if (nfa_regatom() == FAIL)
return FAIL;
}
getchr(); // get the ]
if (n == 0)
EMSG2_RET_FAIL(_(e_empty_str_brackets),
reg_magic == MAGIC_ALL);
EMIT(NFA_OPT_CHARS);
EMIT(n);
// Emit as "\%(\%[abc]\)" to be able to handle
// "\%[abc]*" which would cause the empty string to be
// matched an unlimited number of times. NFA_NOPEN is
// added only once at a position, while NFA_SPLIT is
// added multiple times. This is more efficient than
// not allowing NFA_SPLIT multiple times, it is used
// a lot.
EMIT(NFA_NOPEN);
break;
}
default:
{
long_u n = 0;
int cmp = c;
int cur = FALSE;
int got_digit = FALSE;
if (c == '<' || c == '>')
c = getchr();
if (no_Magic(c) == '.')
{
cur = TRUE;
c = getchr();
}
while (VIM_ISDIGIT(c))
{
long_u tmp;
if (cur)
{
semsg(_(e_regexp_number_after_dot_pos_search_chr),
no_Magic(c));
return FAIL;
}
tmp = n * 10 + (c - '0');
if (tmp < n)
{
// overflow.
emsg(_(e_percent_value_too_large));
return FAIL;
}
n = tmp;
c = getchr();
got_digit = TRUE;
}
if (c == 'l' || c == 'c' || c == 'v')
{
long_u limit = INT_MAX;
if (!cur && !got_digit)
{
semsg(_(e_nfa_regexp_missing_value_in_chr),
no_Magic(c));
return FAIL;
}
if (c == 'l')
{
if (cur)
n = curwin->w_cursor.lnum;
// \%{n}l \%{n}<l \%{n}>l
EMIT(cmp == '<' ? NFA_LNUM_LT :
cmp == '>' ? NFA_LNUM_GT : NFA_LNUM);
if (save_prev_at_start)
at_start = TRUE;
}
else if (c == 'c')
{
if (cur)
{
n = curwin->w_cursor.col;
n++;
}
// \%{n}c \%{n}<c \%{n}>c
EMIT(cmp == '<' ? NFA_COL_LT :
cmp == '>' ? NFA_COL_GT : NFA_COL);
}
else
{
if (cur)
{
colnr_T vcol = 0;
getvvcol(curwin, &curwin->w_cursor,
NULL, NULL, &vcol);
n = ++vcol;
}
// \%{n}v \%{n}<v \%{n}>v
EMIT(cmp == '<' ? NFA_VCOL_LT :
cmp == '>' ? NFA_VCOL_GT : NFA_VCOL);
limit = INT_MAX / MB_MAXBYTES;
}
if (n >= limit)
{
emsg(_(e_percent_value_too_large));
return FAIL;
}
EMIT((int)n);
break;
}
else if (no_Magic(c) == '\'' && n == 0)
{
// \%'m \%<'m \%>'m
EMIT(cmp == '<' ? NFA_MARK_LT :
cmp == '>' ? NFA_MARK_GT : NFA_MARK);
EMIT(getchr());
break;
}
}
semsg(_(e_nfa_regexp_unknown_operator_percent_chr),
no_Magic(c));
return FAIL;
}
break;
case Magic('['):
collection:
/*
* [abc] uses NFA_START_COLL - NFA_END_COLL
* [^abc] uses NFA_START_NEG_COLL - NFA_END_NEG_COLL
* Each character is produced as a regular state, using
* NFA_CONCAT to bind them together.
* Besides normal characters there can be:
* - character classes NFA_CLASS_*
* - ranges, two characters followed by NFA_RANGE.
*/
p = regparse;
endp = skip_anyof(p);
if (*endp == ']')
{
int plen;
/*
* Try to reverse engineer character classes. For example,
* recognize that [0-9] stands for \d and [A-Za-z_] for \h,
* and perform the necessary substitutions in the NFA.
*/
result = nfa_recognize_char_class(regparse, endp,
extra == NFA_ADD_NL);
if (result != FAIL)
{
if (result >= NFA_FIRST_NL && result <= NFA_LAST_NL)
{
EMIT(result - NFA_ADD_NL);
EMIT(NFA_NEWL);
EMIT(NFA_OR);
}
else
EMIT(result);
regparse = endp;
MB_PTR_ADV(regparse);
return OK;
}
/*
* Failed to recognize a character class. Use the simple
* version that turns [abc] into 'a' OR 'b' OR 'c'
*/
startc = -1;
negated = FALSE;
if (*regparse == '^') // negated range
{
negated = TRUE;
MB_PTR_ADV(regparse);
EMIT(NFA_START_NEG_COLL);
}
else
EMIT(NFA_START_COLL);
if (*regparse == '-')
{
startc = '-';
EMIT(startc);
EMIT(NFA_CONCAT);
MB_PTR_ADV(regparse);
}
// Emit the OR branches for each character in the []
emit_range = FALSE;
while (regparse < endp)
{
int oldstartc = startc;
startc = -1;
got_coll_char = FALSE;
if (*regparse == '[')
{
// Check for [: :], [= =], [. .]
equiclass = collclass = 0;
charclass = get_char_class(&regparse);
if (charclass == CLASS_NONE)
{
equiclass = get_equi_class(&regparse);
if (equiclass == 0)
collclass = get_coll_element(&regparse);
}
// Character class like [:alpha:]
if (charclass != CLASS_NONE)
{
switch (charclass)
{
case CLASS_ALNUM:
EMIT(NFA_CLASS_ALNUM);
break;
case CLASS_ALPHA:
EMIT(NFA_CLASS_ALPHA);
break;
case CLASS_BLANK:
EMIT(NFA_CLASS_BLANK);
break;
case CLASS_CNTRL:
EMIT(NFA_CLASS_CNTRL);
break;
case CLASS_DIGIT:
EMIT(NFA_CLASS_DIGIT);
break;
case CLASS_GRAPH:
EMIT(NFA_CLASS_GRAPH);
break;
case CLASS_LOWER:
wants_nfa = TRUE;
EMIT(NFA_CLASS_LOWER);
break;
case CLASS_PRINT:
EMIT(NFA_CLASS_PRINT);
break;
case CLASS_PUNCT:
EMIT(NFA_CLASS_PUNCT);
break;
case CLASS_SPACE:
EMIT(NFA_CLASS_SPACE);
break;
case CLASS_UPPER:
wants_nfa = TRUE;
EMIT(NFA_CLASS_UPPER);
break;
case CLASS_XDIGIT:
EMIT(NFA_CLASS_XDIGIT);
break;
case CLASS_TAB:
EMIT(NFA_CLASS_TAB);
break;
case CLASS_RETURN:
EMIT(NFA_CLASS_RETURN);
break;
case CLASS_BACKSPACE:
EMIT(NFA_CLASS_BACKSPACE);
break;
case CLASS_ESCAPE:
EMIT(NFA_CLASS_ESCAPE);
break;
case CLASS_IDENT:
EMIT(NFA_CLASS_IDENT);
break;
case CLASS_KEYWORD:
EMIT(NFA_CLASS_KEYWORD);
break;
case CLASS_FNAME:
EMIT(NFA_CLASS_FNAME);
break;
}
EMIT(NFA_CONCAT);
continue;
}
// Try equivalence class [=a=] and the like
if (equiclass != 0)
{
result = nfa_emit_equi_class(equiclass);
if (result == FAIL)
{
// should never happen
EMSG_RET_FAIL(_(e_error_building_nfa_with_equivalence_class));
}
continue;
}
// Try collating class like [. .]
if (collclass != 0)
{
startc = collclass; // allow [.a.]-x as a range
// Will emit the proper atom at the end of the
// while loop.
}
}
// Try a range like 'a-x' or '\t-z'. Also allows '-' as a
// start character.
if (*regparse == '-' && oldstartc != -1)
{
emit_range = TRUE;
startc = oldstartc;
MB_PTR_ADV(regparse);
continue; // reading the end of the range
}
// Now handle simple and escaped characters.
// Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
// accepts "\t", "\e", etc., but only when the 'l' flag in
// 'cpoptions' is not included.
// Posix doesn't recognize backslash at all.
if (*regparse == '\\'
&& !reg_cpo_bsl
&& regparse + 1 <= endp
&& (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL
|| (!reg_cpo_lit
&& vim_strchr(REGEXP_ABBR, regparse[1])
!= NULL)
)
)
{
MB_PTR_ADV(regparse);
if (*regparse == 'n')
startc = (reg_string || emit_range
|| regparse[1] == '-') ? NL : NFA_NEWL;
else if (*regparse == 'd'
|| *regparse == 'o'
|| *regparse == 'x'
|| *regparse == 'u'
|| *regparse == 'U'
)
{
// TODO(RE) This needs more testing
startc = coll_get_char();
got_coll_char = TRUE;
MB_PTR_BACK(old_regparse, regparse);
}
else
{
// \r,\t,\e,\b
startc = backslash_trans(*regparse);
}
}
// Normal printable char
if (startc == -1)
startc = PTR2CHAR(regparse);
// Previous char was '-', so this char is end of range.
if (emit_range)
{
int endc = startc;
startc = oldstartc;
if (startc > endc)
EMSG_RET_FAIL(_(e_reverse_range_in_character_class));
if (endc > startc + 2)
{
// Emit a range instead of the sequence of
// individual characters.
if (startc == 0)
// \x00 is translated to \x0a, start at \x01.
EMIT(1);
else
--post_ptr; // remove NFA_CONCAT
EMIT(endc);
EMIT(NFA_RANGE);
EMIT(NFA_CONCAT);
}
else if (has_mbyte && ((*mb_char2len)(startc) > 1
|| (*mb_char2len)(endc) > 1))
{
// Emit the characters in the range.
// "startc" was already emitted, so skip it.
//
for (c = startc + 1; c <= endc; c++)
{
EMIT(c);
EMIT(NFA_CONCAT);
}
}
else
{
// Emit the range. "startc" was already emitted, so
// skip it.
for (c = startc + 1; c <= endc; c++)
{
EMIT(c);
EMIT(NFA_CONCAT);
}
}
emit_range = FALSE;
startc = -1;
}
else
{
// This char (startc) is not part of a range. Just
// emit it.
// Normally, simply emit startc. But if we get char
// code=0 from a collating char, then replace it with
// 0x0a.
// This is needed to completely mimic the behaviour of
// the backtracking engine.
if (startc == NFA_NEWL)
{
// Line break can't be matched as part of the
// collection, add an OR below. But not for negated
// range.
if (!negated)
extra = NFA_ADD_NL;
}
else
{
if (got_coll_char == TRUE && startc == 0)
{
EMIT(0x0a);
EMIT(NFA_CONCAT);
}
else
{
EMIT(startc);
if (!(enc_utf8 && (utf_ptr2len(regparse) != (plen = utfc_ptr2len(regparse)))))
{
EMIT(NFA_CONCAT);
}
}
}
}
if (enc_utf8 && (utf_ptr2len(regparse) != (plen = utfc_ptr2len(regparse))))
{
int i = utf_ptr2len(regparse);
c = utf_ptr2char(regparse + i);
// Add composing characters
for (;;)
{
if (c == 0)
// \x00 is translated to \x0a, start at \x01.
EMIT(1);
else
EMIT(c);
EMIT(NFA_CONCAT);
if ((i += utf_char2len(c)) >= plen)
break;
c = utf_ptr2char(regparse + i);
}
EMIT(NFA_COMPOSING);
EMIT(NFA_CONCAT);
}
MB_PTR_ADV(regparse);
} // while (p < endp)
MB_PTR_BACK(old_regparse, regparse);
if (*regparse == '-') // if last, '-' is just a char
{
EMIT('-');
EMIT(NFA_CONCAT);
}
// skip the trailing ]
regparse = endp;
MB_PTR_ADV(regparse);
// Mark end of the collection.
if (negated == TRUE)
EMIT(NFA_END_NEG_COLL);
else
EMIT(NFA_END_COLL);
// \_[] also matches \n but it's not negated
if (extra == NFA_ADD_NL)
{
EMIT(reg_string ? NL : NFA_NEWL);
EMIT(NFA_OR);
}
return OK;
} // if exists closing ]
if (reg_strict)
EMSG_RET_FAIL(_(e_missing_rsb_after_str_lsb));
// FALLTHROUGH
default:
{
int plen;
nfa_do_multibyte:
// plen is length of current char with composing chars
if (enc_utf8 && ((*mb_char2len)(c)
!= (plen = utfc_ptr2len(old_regparse))
|| utf_iscomposing(c)))
{
int i = 0;
// A base character plus composing characters, or just one
// or more composing characters.
// This requires creating a separate atom as if enclosing
// the characters in (), where NFA_COMPOSING is the ( and
// NFA_END_COMPOSING is the ). Note that right now we are
// building the postfix form, not the NFA itself;
// a composing char could be: a, b, c, NFA_COMPOSING
// where 'b' and 'c' are chars with codes > 256.
for (;;)
{
EMIT(c);
if (i > 0)
EMIT(NFA_CONCAT);
if ((i += utf_char2len(c)) >= plen)
break;
c = utf_ptr2char(old_regparse + i);
}
EMIT(NFA_COMPOSING);
regparse = old_regparse + plen;
}
else
{
c = no_Magic(c);
EMIT(c);
}
return OK;
}
}
return OK;
}
/*
* Parse something followed by possible [*+=].
*
* A piece is an atom, possibly followed by a multi, an indication of how many
* times the atom can be matched. Example: "a*" matches any sequence of "a"
* characters: "", "a", "aa", etc.
*
* piece ::= atom
* or atom multi
*/
static int
nfa_regpiece(void)
{
int i;
int op;
int ret;
long minval, maxval;
int greedy = TRUE; // Braces are prefixed with '-' ?
parse_state_T old_state;
parse_state_T new_state;
long c2;
int old_post_pos;
int my_post_start;
int quest;
// Save the current parse state, so that we can use it if <atom>{m,n} is
// next.
save_parse_state(&old_state);
// store current pos in the postfix form, for \{m,n} involving 0s
my_post_start = (int)(post_ptr - post_start);
ret = nfa_regatom();
if (ret == FAIL)
return FAIL; // cascaded error
op = peekchr();
if (re_multi_type(op) == NOT_MULTI)
return OK;
skipchr();
switch (op)
{
case Magic('*'):
EMIT(NFA_STAR);
break;
case Magic('+'):
/*
* Trick: Normally, (a*)\+ would match the whole input "aaa". The
* first and only submatch would be "aaa". But the backtracking
* engine interprets the plus as "try matching one more time", and
* a* matches a second time at the end of the input, the empty
* string.
* The submatch will be the empty string.
*
* In order to be consistent with the old engine, we replace
* <atom>+ with <atom><atom>*
*/
restore_parse_state(&old_state);
curchr = -1;
if (nfa_regatom() == FAIL)
return FAIL;
EMIT(NFA_STAR);
EMIT(NFA_CONCAT);
skipchr(); // skip the \+
break;
case Magic('@'):
c2 = getdecchrs();
op = no_Magic(getchr());
i = 0;
switch(op)
{
case '=':
// \@=
i = NFA_PREV_ATOM_NO_WIDTH;
break;
case '!':
// \@!
i = NFA_PREV_ATOM_NO_WIDTH_NEG;
break;
case '<':
op = no_Magic(getchr());
if (op == '=')
// \@<=
i = NFA_PREV_ATOM_JUST_BEFORE;
else if (op == '!')
// \@<!
i = NFA_PREV_ATOM_JUST_BEFORE_NEG;
break;
case '>':
// \@>
i = NFA_PREV_ATOM_LIKE_PATTERN;
break;
}
if (i == 0)
{
semsg(_(e_nfa_regexp_unknown_operator_at_chr), op);
return FAIL;
}
EMIT(i);
if (i == NFA_PREV_ATOM_JUST_BEFORE
|| i == NFA_PREV_ATOM_JUST_BEFORE_NEG)
EMIT(c2);
break;
case Magic('?'):
case Magic('='):
EMIT(NFA_QUEST);
break;
case Magic('{'):
// a{2,5} will expand to 'aaa?a?a?'
// a{-1,3} will expand to 'aa??a??', where ?? is the nongreedy
// version of '?'
// \v(ab){2,3} will expand to '(ab)(ab)(ab)?', where all the
// parenthesis have the same id
greedy = TRUE;
c2 = peekchr();
if (c2 == '-' || c2 == Magic('-'))
{
skipchr();
greedy = FALSE;
}
if (!read_limits(&minval, &maxval))
EMSG_RET_FAIL(_(e_nfa_regexp_error_reading_repetition_limits));
// <atom>{0,inf}, <atom>{0,} and <atom>{} are equivalent to
// <atom>*
if (minval == 0 && maxval == MAX_LIMIT)
{
if (greedy) // { { (match the braces)
// \{}, \{0,}
EMIT(NFA_STAR);
else // { { (match the braces)
// \{-}, \{-0,}
EMIT(NFA_STAR_NONGREEDY);
break;
}
// Special case: x{0} or x{-0}
if (maxval == 0)
{
// Ignore result of previous call to nfa_regatom()
post_ptr = post_start + my_post_start;
// NFA_EMPTY is 0-length and works everywhere
EMIT(NFA_EMPTY);
return OK;
}
// The engine is very inefficient (uses too many states) when the
// maximum is much larger than the minimum and when the maximum is
// large. However, when maxval is MAX_LIMIT, it is okay, as this
// will emit NFA_STAR.
// Bail out if we can use the other engine, but only, when the
// pattern does not need the NFA engine like (e.g. [[:upper:]]\{2,\}
// does not work with characters > 8 bit with the BT engine)
if ((nfa_re_flags & RE_AUTO)
&& (maxval > 500 || maxval > minval + 200)
&& (maxval != MAX_LIMIT && minval < 200)
&& !wants_nfa)
return FAIL;
// Ignore previous call to nfa_regatom()
post_ptr = post_start + my_post_start;
// Save parse state after the repeated atom and the \{}
save_parse_state(&new_state);
quest = (greedy == TRUE? NFA_QUEST : NFA_QUEST_NONGREEDY);
for (i = 0; i < maxval; i++)
{
// Goto beginning of the repeated atom
restore_parse_state(&old_state);
old_post_pos = (int)(post_ptr - post_start);
if (nfa_regatom() == FAIL)
return FAIL;
// after "minval" times, atoms are optional
if (i + 1 > minval)
{
if (maxval == MAX_LIMIT)
{
if (greedy)
EMIT(NFA_STAR);
else
EMIT(NFA_STAR_NONGREEDY);
}
else
EMIT(quest);
}
if (old_post_pos != my_post_start)
EMIT(NFA_CONCAT);
if (i + 1 > minval && maxval == MAX_LIMIT)
break;
}
// Go to just after the repeated atom and the \{}
restore_parse_state(&new_state);
curchr = -1;
break;
default:
break;
} // end switch
if (re_multi_type(peekchr()) != NOT_MULTI)
// Can't have a multi follow a multi.
EMSG_RET_FAIL(_(e_nfa_regexp_cant_have_multi_follow_multi));
return OK;
}
/*
* Parse one or more pieces, concatenated. It matches a match for the
* first piece, followed by a match for the second piece, etc. Example:
* "f[0-9]b", first matches "f", then a digit and then "b".
*
* concat ::= piece
* or piece piece
* or piece piece piece
* etc.
*/
static int
nfa_regconcat(void)
{
int cont = TRUE;
int first = TRUE;
while (cont)
{
switch (peekchr())
{
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
cont = FALSE;
break;
case Magic('Z'):
regflags |= RF_ICOMBINE;
skipchr_keepstart();
break;
case Magic('c'):
regflags |= RF_ICASE;
skipchr_keepstart();
break;
case Magic('C'):
regflags |= RF_NOICASE;
skipchr_keepstart();
break;
case Magic('v'):
reg_magic = MAGIC_ALL;
skipchr_keepstart();
curchr = -1;
break;
case Magic('m'):
reg_magic = MAGIC_ON;
skipchr_keepstart();
curchr = -1;
break;
case Magic('M'):
reg_magic = MAGIC_OFF;
skipchr_keepstart();
curchr = -1;
break;
case Magic('V'):
reg_magic = MAGIC_NONE;
skipchr_keepstart();
curchr = -1;
break;
default:
if (nfa_regpiece() == FAIL)
return FAIL;
if (first == FALSE)
EMIT(NFA_CONCAT);
else
first = FALSE;
break;
}
}
return OK;
}
/*
* Parse a branch, one or more concats, separated by "\&". It matches the
* last concat, but only if all the preceding concats also match at the same
* position. Examples:
* "foobeep\&..." matches "foo" in "foobeep".
* ".*Peter\&.*Bob" matches in a line containing both "Peter" and "Bob"
*
* branch ::= concat
* or concat \& concat
* or concat \& concat \& concat
* etc.
*/
static int
nfa_regbranch(void)
{
int old_post_pos;
old_post_pos = (int)(post_ptr - post_start);
// First branch, possibly the only one
if (nfa_regconcat() == FAIL)
return FAIL;
// Try next concats
while (peekchr() == Magic('&'))
{
skipchr();
// if concat is empty do emit a node
if (old_post_pos == (int)(post_ptr - post_start))
EMIT(NFA_EMPTY);
EMIT(NFA_NOPEN);
EMIT(NFA_PREV_ATOM_NO_WIDTH);
old_post_pos = (int)(post_ptr - post_start);
if (nfa_regconcat() == FAIL)
return FAIL;
// if concat is empty do emit a node
if (old_post_pos == (int)(post_ptr - post_start))
EMIT(NFA_EMPTY);
EMIT(NFA_CONCAT);
}
// if a branch is empty, emit one node for it
if (old_post_pos == (int)(post_ptr - post_start))
EMIT(NFA_EMPTY);
return OK;
}
/*
* Parse a pattern, one or more branches, separated by "\|". It matches
* anything that matches one of the branches. Example: "foo\|beep" matches
* "foo" and matches "beep". If more than one branch matches, the first one
* is used.
*
* pattern ::= branch
* or branch \| branch
* or branch \| branch \| branch
* etc.
*/
static int
nfa_reg(
int paren) // REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN
{
int parno = 0;
if (paren == REG_PAREN)
{
if (regnpar >= NSUBEXP) // Too many `('
EMSG_RET_FAIL(_(e_nfa_regexp_too_many_parens));
parno = regnpar++;
}
#ifdef FEAT_SYN_HL
else if (paren == REG_ZPAREN)
{
// Make a ZOPEN node.
if (regnzpar >= NSUBEXP)
EMSG_RET_FAIL(_(e_nfa_regexp_too_many_z));
parno = regnzpar++;
}
#endif
if (nfa_regbranch() == FAIL)
return FAIL; // cascaded error
while (peekchr() == Magic('|'))
{
skipchr();
if (nfa_regbranch() == FAIL)
return FAIL; // cascaded error
EMIT(NFA_OR);
}
// Check for proper termination.
if (paren != REG_NOPAREN && getchr() != Magic(')'))
{
if (paren == REG_NPAREN)
EMSG2_RET_FAIL(_(e_unmatched_str_percent_open),
reg_magic == MAGIC_ALL);
else
EMSG2_RET_FAIL(_(e_unmatched_str_open), reg_magic == MAGIC_ALL);
}
else if (paren == REG_NOPAREN && peekchr() != NUL)
{
if (peekchr() == Magic(')'))
EMSG2_RET_FAIL(_(e_unmatched_str_close), reg_magic == MAGIC_ALL);
else
EMSG_RET_FAIL(_(e_nfa_regexp_proper_termination_error));
}
/*
* Here we set the flag allowing back references to this set of
* parentheses.
*/
if (paren == REG_PAREN)
{
had_endbrace[parno] = TRUE; // have seen the close paren
EMIT(NFA_MOPEN + parno);
}
#ifdef FEAT_SYN_HL
else if (paren == REG_ZPAREN)
EMIT(NFA_ZOPEN + parno);
#endif
return OK;
}
#ifdef DEBUG
static char_u code[50];
static void
nfa_set_code(int c)
{
int addnl = FALSE;
if (c >= NFA_FIRST_NL && c <= NFA_LAST_NL)
{
addnl = TRUE;
c -= NFA_ADD_NL;
}
STRCPY(code, "");
switch (c)
{
case NFA_MATCH: STRCPY(code, "NFA_MATCH "); break;
case NFA_SPLIT: STRCPY(code, "NFA_SPLIT "); break;
case NFA_CONCAT: STRCPY(code, "NFA_CONCAT "); break;
case NFA_NEWL: STRCPY(code, "NFA_NEWL "); break;
case NFA_ZSTART: STRCPY(code, "NFA_ZSTART"); break;
case NFA_ZEND: STRCPY(code, "NFA_ZEND"); break;
case NFA_BACKREF1: STRCPY(code, "NFA_BACKREF1"); break;
case NFA_BACKREF2: STRCPY(code, "NFA_BACKREF2"); break;
case NFA_BACKREF3: STRCPY(code, "NFA_BACKREF3"); break;
case NFA_BACKREF4: STRCPY(code, "NFA_BACKREF4"); break;
case NFA_BACKREF5: STRCPY(code, "NFA_BACKREF5"); break;
case NFA_BACKREF6: STRCPY(code, "NFA_BACKREF6"); break;
case NFA_BACKREF7: STRCPY(code, "NFA_BACKREF7"); break;
case NFA_BACKREF8: STRCPY(code, "NFA_BACKREF8"); break;
case NFA_BACKREF9: STRCPY(code, "NFA_BACKREF9"); break;
#ifdef FEAT_SYN_HL
case NFA_ZREF1: STRCPY(code, "NFA_ZREF1"); break;
case NFA_ZREF2: STRCPY(code, "NFA_ZREF2"); break;
case NFA_ZREF3: STRCPY(code, "NFA_ZREF3"); break;
case NFA_ZREF4: STRCPY(code, "NFA_ZREF4"); break;
case NFA_ZREF5: STRCPY(code, "NFA_ZREF5"); break;
case NFA_ZREF6: STRCPY(code, "NFA_ZREF6"); break;
case NFA_ZREF7: STRCPY(code, "NFA_ZREF7"); break;
case NFA_ZREF8: STRCPY(code, "NFA_ZREF8"); break;
case NFA_ZREF9: STRCPY(code, "NFA_ZREF9"); break;
#endif
case NFA_SKIP: STRCPY(code, "NFA_SKIP"); break;
case NFA_PREV_ATOM_NO_WIDTH:
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH"); break;
case NFA_PREV_ATOM_NO_WIDTH_NEG:
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH_NEG"); break;
case NFA_PREV_ATOM_JUST_BEFORE:
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE"); break;
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE_NEG"); break;
case NFA_PREV_ATOM_LIKE_PATTERN:
STRCPY(code, "NFA_PREV_ATOM_LIKE_PATTERN"); break;
case NFA_NOPEN: STRCPY(code, "NFA_NOPEN"); break;
case NFA_NCLOSE: STRCPY(code, "NFA_NCLOSE"); break;
case NFA_START_INVISIBLE: STRCPY(code, "NFA_START_INVISIBLE"); break;
case NFA_START_INVISIBLE_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_FIRST"); break;
case NFA_START_INVISIBLE_NEG:
STRCPY(code, "NFA_START_INVISIBLE_NEG"); break;
case NFA_START_INVISIBLE_NEG_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_NEG_FIRST"); break;
case NFA_START_INVISIBLE_BEFORE:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE"); break;
case NFA_START_INVISIBLE_BEFORE_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_FIRST"); break;
case NFA_START_INVISIBLE_BEFORE_NEG:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG"); break;
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG_FIRST"); break;
case NFA_START_PATTERN: STRCPY(code, "NFA_START_PATTERN"); break;
case NFA_END_INVISIBLE: STRCPY(code, "NFA_END_INVISIBLE"); break;
case NFA_END_INVISIBLE_NEG: STRCPY(code, "NFA_END_INVISIBLE_NEG"); break;
case NFA_END_PATTERN: STRCPY(code, "NFA_END_PATTERN"); break;
case NFA_COMPOSING: STRCPY(code, "NFA_COMPOSING"); break;
case NFA_END_COMPOSING: STRCPY(code, "NFA_END_COMPOSING"); break;
case NFA_OPT_CHARS: STRCPY(code, "NFA_OPT_CHARS"); break;
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
STRCPY(code, "NFA_MOPEN(x)");
code[10] = c - NFA_MOPEN + '0';
break;
case NFA_MCLOSE:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
STRCPY(code, "NFA_MCLOSE(x)");
code[11] = c - NFA_MCLOSE + '0';
break;
#ifdef FEAT_SYN_HL
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
STRCPY(code, "NFA_ZOPEN(x)");
code[10] = c - NFA_ZOPEN + '0';
break;
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
STRCPY(code, "NFA_ZCLOSE(x)");
code[11] = c - NFA_ZCLOSE + '0';
break;
#endif
case NFA_EOL: STRCPY(code, "NFA_EOL "); break;
case NFA_BOL: STRCPY(code, "NFA_BOL "); break;
case NFA_EOW: STRCPY(code, "NFA_EOW "); break;
case NFA_BOW: STRCPY(code, "NFA_BOW "); break;
case NFA_EOF: STRCPY(code, "NFA_EOF "); break;
case NFA_BOF: STRCPY(code, "NFA_BOF "); break;
case NFA_LNUM: STRCPY(code, "NFA_LNUM "); break;
case NFA_LNUM_GT: STRCPY(code, "NFA_LNUM_GT "); break;
case NFA_LNUM_LT: STRCPY(code, "NFA_LNUM_LT "); break;
case NFA_COL: STRCPY(code, "NFA_COL "); break;
case NFA_COL_GT: STRCPY(code, "NFA_COL_GT "); break;
case NFA_COL_LT: STRCPY(code, "NFA_COL_LT "); break;
case NFA_VCOL: STRCPY(code, "NFA_VCOL "); break;
case NFA_VCOL_GT: STRCPY(code, "NFA_VCOL_GT "); break;
case NFA_VCOL_LT: STRCPY(code, "NFA_VCOL_LT "); break;
case NFA_MARK: STRCPY(code, "NFA_MARK "); break;
case NFA_MARK_GT: STRCPY(code, "NFA_MARK_GT "); break;
case NFA_MARK_LT: STRCPY(code, "NFA_MARK_LT "); break;
case NFA_CURSOR: STRCPY(code, "NFA_CURSOR "); break;
case NFA_VISUAL: STRCPY(code, "NFA_VISUAL "); break;
case NFA_ANY_COMPOSING: STRCPY(code, "NFA_ANY_COMPOSING "); break;
case NFA_STAR: STRCPY(code, "NFA_STAR "); break;
case NFA_STAR_NONGREEDY: STRCPY(code, "NFA_STAR_NONGREEDY "); break;
case NFA_QUEST: STRCPY(code, "NFA_QUEST"); break;
case NFA_QUEST_NONGREEDY: STRCPY(code, "NFA_QUEST_NON_GREEDY"); break;
case NFA_EMPTY: STRCPY(code, "NFA_EMPTY"); break;
case NFA_OR: STRCPY(code, "NFA_OR"); break;
case NFA_START_COLL: STRCPY(code, "NFA_START_COLL"); break;
case NFA_END_COLL: STRCPY(code, "NFA_END_COLL"); break;
case NFA_START_NEG_COLL: STRCPY(code, "NFA_START_NEG_COLL"); break;
case NFA_END_NEG_COLL: STRCPY(code, "NFA_END_NEG_COLL"); break;
case NFA_RANGE: STRCPY(code, "NFA_RANGE"); break;
case NFA_RANGE_MIN: STRCPY(code, "NFA_RANGE_MIN"); break;
case NFA_RANGE_MAX: STRCPY(code, "NFA_RANGE_MAX"); break;
case NFA_CLASS_ALNUM: STRCPY(code, "NFA_CLASS_ALNUM"); break;
case NFA_CLASS_ALPHA: STRCPY(code, "NFA_CLASS_ALPHA"); break;
case NFA_CLASS_BLANK: STRCPY(code, "NFA_CLASS_BLANK"); break;
case NFA_CLASS_CNTRL: STRCPY(code, "NFA_CLASS_CNTRL"); break;
case NFA_CLASS_DIGIT: STRCPY(code, "NFA_CLASS_DIGIT"); break;
case NFA_CLASS_GRAPH: STRCPY(code, "NFA_CLASS_GRAPH"); break;
case NFA_CLASS_LOWER: STRCPY(code, "NFA_CLASS_LOWER"); break;
case NFA_CLASS_PRINT: STRCPY(code, "NFA_CLASS_PRINT"); break;
case NFA_CLASS_PUNCT: STRCPY(code, "NFA_CLASS_PUNCT"); break;
case NFA_CLASS_SPACE: STRCPY(code, "NFA_CLASS_SPACE"); break;
case NFA_CLASS_UPPER: STRCPY(code, "NFA_CLASS_UPPER"); break;
case NFA_CLASS_XDIGIT: STRCPY(code, "NFA_CLASS_XDIGIT"); break;
case NFA_CLASS_TAB: STRCPY(code, "NFA_CLASS_TAB"); break;
case NFA_CLASS_RETURN: STRCPY(code, "NFA_CLASS_RETURN"); break;
case NFA_CLASS_BACKSPACE: STRCPY(code, "NFA_CLASS_BACKSPACE"); break;
case NFA_CLASS_ESCAPE: STRCPY(code, "NFA_CLASS_ESCAPE"); break;
case NFA_CLASS_IDENT: STRCPY(code, "NFA_CLASS_IDENT"); break;
case NFA_CLASS_KEYWORD: STRCPY(code, "NFA_CLASS_KEYWORD"); break;
case NFA_CLASS_FNAME: STRCPY(code, "NFA_CLASS_FNAME"); break;
case NFA_ANY: STRCPY(code, "NFA_ANY"); break;
case NFA_IDENT: STRCPY(code, "NFA_IDENT"); break;
case NFA_SIDENT:STRCPY(code, "NFA_SIDENT"); break;
case NFA_KWORD: STRCPY(code, "NFA_KWORD"); break;
case NFA_SKWORD:STRCPY(code, "NFA_SKWORD"); break;
case NFA_FNAME: STRCPY(code, "NFA_FNAME"); break;
case NFA_SFNAME:STRCPY(code, "NFA_SFNAME"); break;
case NFA_PRINT: STRCPY(code, "NFA_PRINT"); break;
case NFA_SPRINT:STRCPY(code, "NFA_SPRINT"); break;
case NFA_WHITE: STRCPY(code, "NFA_WHITE"); break;
case NFA_NWHITE:STRCPY(code, "NFA_NWHITE"); break;
case NFA_DIGIT: STRCPY(code, "NFA_DIGIT"); break;
case NFA_NDIGIT:STRCPY(code, "NFA_NDIGIT"); break;
case NFA_HEX: STRCPY(code, "NFA_HEX"); break;
case NFA_NHEX: STRCPY(code, "NFA_NHEX"); break;
case NFA_OCTAL: STRCPY(code, "NFA_OCTAL"); break;
case NFA_NOCTAL:STRCPY(code, "NFA_NOCTAL"); break;
case NFA_WORD: STRCPY(code, "NFA_WORD"); break;
case NFA_NWORD: STRCPY(code, "NFA_NWORD"); break;
case NFA_HEAD: STRCPY(code, "NFA_HEAD"); break;
case NFA_NHEAD: STRCPY(code, "NFA_NHEAD"); break;
case NFA_ALPHA: STRCPY(code, "NFA_ALPHA"); break;
case NFA_NALPHA:STRCPY(code, "NFA_NALPHA"); break;
case NFA_LOWER: STRCPY(code, "NFA_LOWER"); break;
case NFA_NLOWER:STRCPY(code, "NFA_NLOWER"); break;
case NFA_UPPER: STRCPY(code, "NFA_UPPER"); break;
case NFA_NUPPER:STRCPY(code, "NFA_NUPPER"); break;
case NFA_LOWER_IC: STRCPY(code, "NFA_LOWER_IC"); break;
case NFA_NLOWER_IC: STRCPY(code, "NFA_NLOWER_IC"); break;
case NFA_UPPER_IC: STRCPY(code, "NFA_UPPER_IC"); break;
case NFA_NUPPER_IC: STRCPY(code, "NFA_NUPPER_IC"); break;
default:
STRCPY(code, "CHAR(x)");
code[5] = c;
}
if (addnl == TRUE)
STRCAT(code, " + NEWLINE ");
}
#ifdef ENABLE_LOG
static FILE *log_fd;
static char_u e_log_open_failed[] = N_("Could not open temporary log file for writing, displaying on stderr... ");
/*
* Print the postfix notation of the current regexp.
*/
static void
nfa_postfix_dump(char_u *expr, int retval)
{
int *p;
FILE *f;
f = fopen(NFA_REGEXP_DUMP_LOG, "a");
if (f == NULL)
return;
fprintf(f, "\n-------------------------\n");
if (retval == FAIL)
fprintf(f, ">>> NFA engine failed... \n");
else if (retval == OK)
fprintf(f, ">>> NFA engine succeeded !\n");
fprintf(f, "Regexp: \"%s\"\nPostfix notation (char): \"", expr);
for (p = post_start; *p && p < post_ptr; p++)
{
nfa_set_code(*p);
fprintf(f, "%s, ", code);
}
fprintf(f, "\"\nPostfix notation (int): ");
for (p = post_start; *p && p < post_ptr; p++)
fprintf(f, "%d ", *p);
fprintf(f, "\n\n");
fclose(f);
}
/*
* Print the NFA starting with a root node "state".
*/
static void
nfa_print_state(FILE *debugf, nfa_state_T *state)
{
garray_T indent;
ga_init2(&indent, 1, 64);
ga_append(&indent, '\0');
nfa_print_state2(debugf, state, &indent);
ga_clear(&indent);
}
static void
nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent)
{
char_u *p;
if (state == NULL)
return;
fprintf(debugf, "(%2d)", abs(state->id));
// Output indent
p = (char_u *)indent->ga_data;
if (indent->ga_len >= 3)
{
int last = indent->ga_len - 3;
char_u save[2];
STRNCPY(save, &p[last], 2);
memcpy(&p[last], "+-", 2);
fprintf(debugf, " %s", p);
STRNCPY(&p[last], save, 2);
}
else
fprintf(debugf, " %s", p);
nfa_set_code(state->c);
fprintf(debugf, "%s (%d) (id=%d) val=%d\n",
code,
state->c,
abs(state->id),
state->val);
if (state->id < 0)
return;
state->id = abs(state->id) * -1;
// grow indent for state->out
indent->ga_len -= 1;
if (state->out1)
ga_concat(indent, (char_u *)"| ");
else
ga_concat(indent, (char_u *)" ");
ga_append(indent, NUL);
nfa_print_state2(debugf, state->out, indent);
// replace last part of indent for state->out1
indent->ga_len -= 3;
ga_concat(indent, (char_u *)" ");
ga_append(indent, NUL);
nfa_print_state2(debugf, state->out1, indent);
// shrink indent
indent->ga_len -= 3;
ga_append(indent, NUL);
}
/*
* Print the NFA state machine.
*/
static void
nfa_dump(nfa_regprog_T *prog)
{
FILE *debugf = fopen(NFA_REGEXP_DUMP_LOG, "a");
if (debugf == NULL)
return;
nfa_print_state(debugf, prog->start);
if (prog->reganch)
fprintf(debugf, "reganch: %d\n", prog->reganch);
if (prog->regstart != NUL)
fprintf(debugf, "regstart: %c (decimal: %d)\n",
prog->regstart, prog->regstart);
if (prog->match_text != NULL)
fprintf(debugf, "match_text: \"%s\"\n", prog->match_text);
fclose(debugf);
}
#endif // ENABLE_LOG
#endif // DEBUG
/*
* Parse r.e. @expr and convert it into postfix form.
* Return the postfix string on success, NULL otherwise.
*/
static int *
re2post(void)
{
if (nfa_reg(REG_NOPAREN) == FAIL)
return NULL;
EMIT(NFA_MOPEN);
return post_start;
}
// NB. Some of the code below is inspired by Russ's.
/*
* Represents an NFA state plus zero or one or two arrows exiting.
* if c == MATCH, no arrows out; matching state.
* If c == SPLIT, unlabeled arrows to out and out1 (if != NULL).
* If c < 256, labeled arrow with character c to out.
*/
static nfa_state_T *state_ptr; // points to nfa_prog->state
/*
* Allocate and initialize nfa_state_T.
*/
static nfa_state_T *
alloc_state(int c, nfa_state_T *out, nfa_state_T *out1)
{
nfa_state_T *s;
if (istate >= nstate)
return NULL;
s = &state_ptr[istate++];
s->c = c;
s->out = out;
s->out1 = out1;
s->val = 0;
s->id = istate;
s->lastlist[0] = 0;
s->lastlist[1] = 0;
return s;
}
/*
* A partially built NFA without the matching state filled in.
* Frag_T.start points at the start state.
* Frag_T.out is a list of places that need to be set to the
* next state for this fragment.
*/
// Since the out pointers in the list are always
// uninitialized, we use the pointers themselves
// as storage for the Ptrlists.
typedef union Ptrlist Ptrlist;
union Ptrlist
{
Ptrlist *next;
nfa_state_T *s;
};
struct Frag
{
nfa_state_T *start;
Ptrlist *out;
};
typedef struct Frag Frag_T;
/*
* Initialize a Frag_T struct and return it.
*/
static Frag_T
frag(nfa_state_T *start, Ptrlist *out)
{
Frag_T n;
n.start = start;
n.out = out;
return n;
}
/*
* Create singleton list containing just outp.
*/
static Ptrlist *
list1(
nfa_state_T **outp)
{
Ptrlist *l;
l = (Ptrlist *)outp;
l->next = NULL;
return l;
}
/*
* Patch the list of states at out to point to start.
*/
static void
patch(Ptrlist *l, nfa_state_T *s)
{
Ptrlist *next;
for (; l; l = next)
{
next = l->next;
l->s = s;
}
}
/*
* Join the two lists l1 and l2, returning the combination.
*/
static Ptrlist *
append(Ptrlist *l1, Ptrlist *l2)
{
Ptrlist *oldl1;
oldl1 = l1;
while (l1->next)
l1 = l1->next;
l1->next = l2;
return oldl1;
}
/*
* Stack used for transforming postfix form into NFA.
*/
static Frag_T empty;
static void
st_error(int *postfix UNUSED, int *end UNUSED, int *p UNUSED)
{
#ifdef NFA_REGEXP_ERROR_LOG
FILE *df;
int *p2;
df = fopen(NFA_REGEXP_ERROR_LOG, "a");
if (df)
{
fprintf(df, "Error popping the stack!\n");
# ifdef DEBUG
fprintf(df, "Current regexp is \"%s\"\n", nfa_regengine.expr);
# endif
fprintf(df, "Postfix form is: ");
# ifdef DEBUG
for (p2 = postfix; p2 < end; p2++)
{
nfa_set_code(*p2);
fprintf(df, "%s, ", code);
}
nfa_set_code(*p);
fprintf(df, "\nCurrent position is: ");
for (p2 = postfix; p2 <= p; p2 ++)
{
nfa_set_code(*p2);
fprintf(df, "%s, ", code);
}
# else
for (p2 = postfix; p2 < end; p2++)
fprintf(df, "%d, ", *p2);
fprintf(df, "\nCurrent position is: ");
for (p2 = postfix; p2 <= p; p2 ++)
fprintf(df, "%d, ", *p2);
# endif
fprintf(df, "\n--------------------------\n");
fclose(df);
}
#endif
emsg(_(e_nfa_regexp_could_not_pop_stack));
}
/*
* Push an item onto the stack.
*/
static void
st_push(Frag_T s, Frag_T **p, Frag_T *stack_end)
{
Frag_T *stackp = *p;
if (stackp >= stack_end)
return;
*stackp = s;
*p = *p + 1;
}
/*
* Pop an item from the stack.
*/
static Frag_T
st_pop(Frag_T **p, Frag_T *stack)
{
Frag_T *stackp;
*p = *p - 1;
stackp = *p;
if (stackp < stack)
return empty;
return **p;
}
/*
* Estimate the maximum byte length of anything matching "state".
* When unknown or unlimited return -1.
*/
static int
nfa_max_width(nfa_state_T *startstate, int depth)
{
int l, r;
nfa_state_T *state = startstate;
int len = 0;
// detect looping in a NFA_SPLIT
if (depth > 4)
return -1;
while (state != NULL)
{
switch (state->c)
{
case NFA_END_INVISIBLE:
case NFA_END_INVISIBLE_NEG:
// the end, return what we have
return len;
case NFA_SPLIT:
// two alternatives, use the maximum
l = nfa_max_width(state->out, depth + 1);
r = nfa_max_width(state->out1, depth + 1);
if (l < 0 || r < 0)
return -1;
return len + (l > r ? l : r);
case NFA_ANY:
case NFA_START_COLL:
case NFA_START_NEG_COLL:
// matches some character, including composing chars
if (enc_utf8)
len += MB_MAXBYTES;
else if (has_mbyte)
len += 2;
else
++len;
if (state->c != NFA_ANY)
{
// skip over the characters
state = state->out1->out;
continue;
}
break;
case NFA_DIGIT:
case NFA_WHITE:
case NFA_HEX:
case NFA_OCTAL:
// ascii
++len;
break;
case NFA_IDENT:
case NFA_SIDENT:
case NFA_KWORD:
case NFA_SKWORD:
case NFA_FNAME:
case NFA_SFNAME:
case NFA_PRINT:
case NFA_SPRINT:
case NFA_NWHITE:
case NFA_NDIGIT:
case NFA_NHEX:
case NFA_NOCTAL:
case NFA_WORD:
case NFA_NWORD:
case NFA_HEAD:
case NFA_NHEAD:
case NFA_ALPHA:
case NFA_NALPHA:
case NFA_LOWER:
case NFA_NLOWER:
case NFA_UPPER:
case NFA_NUPPER:
case NFA_LOWER_IC:
case NFA_NLOWER_IC:
case NFA_UPPER_IC:
case NFA_NUPPER_IC:
case NFA_ANY_COMPOSING:
// possibly non-ascii
if (has_mbyte)
len += 3;
else
++len;
break;
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_NEG:
// zero-width, out1 points to the END state
state = state->out1->out;
continue;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
#ifdef FEAT_SYN_HL
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
#endif
case NFA_NEWL:
case NFA_SKIP:
// unknown width
return -1;
case NFA_BOL:
case NFA_EOL:
case NFA_BOF:
case NFA_EOF:
case NFA_BOW:
case NFA_EOW:
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
#ifdef FEAT_SYN_HL
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
#endif
case NFA_MCLOSE:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
case NFA_NOPEN:
case NFA_NCLOSE:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_MARK_GT:
case NFA_MARK_LT:
case NFA_VISUAL:
case NFA_LNUM:
case NFA_CURSOR:
case NFA_COL:
case NFA_VCOL:
case NFA_MARK:
case NFA_ZSTART:
case NFA_ZEND:
case NFA_OPT_CHARS:
case NFA_EMPTY:
case NFA_START_PATTERN:
case NFA_END_PATTERN:
case NFA_COMPOSING:
case NFA_END_COMPOSING:
// zero-width
break;
default:
if (state->c < 0)
// don't know what this is
return -1;
// normal character
len += MB_CHAR2LEN(state->c);
break;
}
// normal way to continue
state = state->out;
}
// unrecognized, "cannot happen"
return -1;
}
/*
* Convert a postfix form into its equivalent NFA.
* Return the NFA start state on success, NULL otherwise.
*/
static nfa_state_T *
post2nfa(int *postfix, int *end, int nfa_calc_size)
{
int *p;
int mopen;
int mclose;
Frag_T *stack = NULL;
Frag_T *stackp = NULL;
Frag_T *stack_end = NULL;
Frag_T e1;
Frag_T e2;
Frag_T e;
nfa_state_T *s;
nfa_state_T *s1;
nfa_state_T *matchstate;
nfa_state_T *ret = NULL;
if (postfix == NULL)
return NULL;
#define PUSH(s) st_push((s), &stackp, stack_end)
#define POP() st_pop(&stackp, stack); \
if (stackp < stack) \
{ \
st_error(postfix, end, p); \
vim_free(stack); \
return NULL; \
}
if (nfa_calc_size == FALSE)
{
// Allocate space for the stack. Max states on the stack: "nstate".
stack = ALLOC_MULT(Frag_T, nstate + 1);
if (stack == NULL)
return NULL;
stackp = stack;
stack_end = stack + (nstate + 1);
}
for (p = postfix; p < end; ++p)
{
switch (*p)
{
case NFA_CONCAT:
// Concatenation.
// Pay attention: this operator does not exist in the r.e. itself
// (it is implicit, really). It is added when r.e. is translated
// to postfix form in re2post().
if (nfa_calc_size == TRUE)
{
// nstate += 0;
break;
}
e2 = POP();
e1 = POP();
patch(e1.out, e2.start);
PUSH(frag(e1.start, e2.out));
break;
case NFA_OR:
// Alternation
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e2 = POP();
e1 = POP();
s = alloc_state(NFA_SPLIT, e1.start, e2.start);
if (s == NULL)
goto theend;
PUSH(frag(s, append(e1.out, e2.out)));
break;
case NFA_STAR:
// Zero or more, prefer more
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, e.start, NULL);
if (s == NULL)
goto theend;
patch(e.out, s);
PUSH(frag(s, list1(&s->out1)));
break;
case NFA_STAR_NONGREEDY:
// Zero or more, prefer zero
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, NULL, e.start);
if (s == NULL)
goto theend;
patch(e.out, s);
PUSH(frag(s, list1(&s->out)));
break;
case NFA_QUEST:
// one or zero atoms=> greedy match
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, e.start, NULL);
if (s == NULL)
goto theend;
PUSH(frag(s, append(e.out, list1(&s->out1))));
break;
case NFA_QUEST_NONGREEDY:
// zero or one atoms => non-greedy match
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, NULL, e.start);
if (s == NULL)
goto theend;
PUSH(frag(s, append(e.out, list1(&s->out))));
break;
case NFA_END_COLL:
case NFA_END_NEG_COLL:
// On the stack is the sequence starting with NFA_START_COLL or
// NFA_START_NEG_COLL and all possible characters. Patch it to
// add the output to the start.
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_END_COLL, NULL, NULL);
if (s == NULL)
goto theend;
patch(e.out, s);
e.start->out1 = s;
PUSH(frag(e.start, list1(&s->out)));
break;
case NFA_RANGE:
// Before this are two characters, the low and high end of a
// range. Turn them into two states with MIN and MAX.
if (nfa_calc_size == TRUE)
{
// nstate += 0;
break;
}
e2 = POP();
e1 = POP();
e2.start->val = e2.start->c;
e2.start->c = NFA_RANGE_MAX;
e1.start->val = e1.start->c;
e1.start->c = NFA_RANGE_MIN;
patch(e1.out, e2.start);
PUSH(frag(e1.start, e2.out));
break;
case NFA_EMPTY:
// 0-length, used in a repetition with max/min count of 0
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
s = alloc_state(NFA_EMPTY, NULL, NULL);
if (s == NULL)
goto theend;
PUSH(frag(s, list1(&s->out)));
break;
case NFA_OPT_CHARS:
{
int n;
// \%[abc] implemented as:
// NFA_SPLIT
// +-CHAR(a)
// | +-NFA_SPLIT
// | +-CHAR(b)
// | | +-NFA_SPLIT
// | | +-CHAR(c)
// | | | +-next
// | | +- next
// | +- next
// +- next
n = *++p; // get number of characters
if (nfa_calc_size == TRUE)
{
nstate += n;
break;
}
s = NULL; // avoid compiler warning
e1.out = NULL; // stores list with out1's
s1 = NULL; // previous NFA_SPLIT to connect to
while (n-- > 0)
{
e = POP(); // get character
s = alloc_state(NFA_SPLIT, e.start, NULL);
if (s == NULL)
goto theend;
if (e1.out == NULL)
e1 = e;
patch(e.out, s1);
append(e1.out, list1(&s->out1));
s1 = s;
}
PUSH(frag(s, e1.out));
break;
}
case NFA_PREV_ATOM_NO_WIDTH:
case NFA_PREV_ATOM_NO_WIDTH_NEG:
case NFA_PREV_ATOM_JUST_BEFORE:
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
case NFA_PREV_ATOM_LIKE_PATTERN:
{
int before = (*p == NFA_PREV_ATOM_JUST_BEFORE
|| *p == NFA_PREV_ATOM_JUST_BEFORE_NEG);
int pattern = (*p == NFA_PREV_ATOM_LIKE_PATTERN);
int start_state;
int end_state;
int n = 0;
nfa_state_T *zend;
nfa_state_T *skip;
switch (*p)
{
case NFA_PREV_ATOM_NO_WIDTH:
start_state = NFA_START_INVISIBLE;
end_state = NFA_END_INVISIBLE;
break;
case NFA_PREV_ATOM_NO_WIDTH_NEG:
start_state = NFA_START_INVISIBLE_NEG;
end_state = NFA_END_INVISIBLE_NEG;
break;
case NFA_PREV_ATOM_JUST_BEFORE:
start_state = NFA_START_INVISIBLE_BEFORE;
end_state = NFA_END_INVISIBLE;
break;
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
start_state = NFA_START_INVISIBLE_BEFORE_NEG;
end_state = NFA_END_INVISIBLE_NEG;
break;
default: // NFA_PREV_ATOM_LIKE_PATTERN:
start_state = NFA_START_PATTERN;
end_state = NFA_END_PATTERN;
break;
}
if (before)
n = *++p; // get the count
// The \@= operator: match the preceding atom with zero width.
// The \@! operator: no match for the preceding atom.
// The \@<= operator: match for the preceding atom.
// The \@<! operator: no match for the preceding atom.
// Surrounds the preceding atom with START_INVISIBLE and
// END_INVISIBLE, similarly to MOPEN.
if (nfa_calc_size == TRUE)
{
nstate += pattern ? 4 : 2;
break;
}
e = POP();
s1 = alloc_state(end_state, NULL, NULL);
if (s1 == NULL)
goto theend;
s = alloc_state(start_state, e.start, s1);
if (s == NULL)
goto theend;
if (pattern)
{
// NFA_ZEND -> NFA_END_PATTERN -> NFA_SKIP -> what follows.
skip = alloc_state(NFA_SKIP, NULL, NULL);
if (skip == NULL)
goto theend;
zend = alloc_state(NFA_ZEND, s1, NULL);
if (zend == NULL)
goto theend;
s1->out= skip;
patch(e.out, zend);
PUSH(frag(s, list1(&skip->out)));
}
else
{
patch(e.out, s1);
PUSH(frag(s, list1(&s1->out)));
if (before)
{
if (n <= 0)
// See if we can guess the maximum width, it avoids a
// lot of pointless tries.
n = nfa_max_width(e.start, 0);
s->val = n; // store the count
}
}
break;
}
case NFA_COMPOSING: // char with composing char
#if 0
// TODO
if (regflags & RF_ICOMBINE)
{
// use the base character only
}
#endif
// FALLTHROUGH
case NFA_MOPEN: // \( \) Submatch
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
#ifdef FEAT_SYN_HL
case NFA_ZOPEN: // \z( \) Submatch
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
#endif
case NFA_NOPEN: // \%( \) "Invisible Submatch"
if (nfa_calc_size == TRUE)
{
nstate += 2;
break;
}
mopen = *p;
switch (*p)
{
case NFA_NOPEN: mclose = NFA_NCLOSE; break;
#ifdef FEAT_SYN_HL
case NFA_ZOPEN: mclose = NFA_ZCLOSE; break;
case NFA_ZOPEN1: mclose = NFA_ZCLOSE1; break;
case NFA_ZOPEN2: mclose = NFA_ZCLOSE2; break;
case NFA_ZOPEN3: mclose = NFA_ZCLOSE3; break;
case NFA_ZOPEN4: mclose = NFA_ZCLOSE4; break;
case NFA_ZOPEN5: mclose = NFA_ZCLOSE5; break;
case NFA_ZOPEN6: mclose = NFA_ZCLOSE6; break;
case NFA_ZOPEN7: mclose = NFA_ZCLOSE7; break;
case NFA_ZOPEN8: mclose = NFA_ZCLOSE8; break;
case NFA_ZOPEN9: mclose = NFA_ZCLOSE9; break;
#endif
case NFA_COMPOSING: mclose = NFA_END_COMPOSING; break;
default:
// NFA_MOPEN, NFA_MOPEN1 .. NFA_MOPEN9
mclose = *p + NSUBEXP;
break;
}
// Allow "NFA_MOPEN" as a valid postfix representation for
// the empty regexp "". In this case, the NFA will be
// NFA_MOPEN -> NFA_MCLOSE. Note that this also allows
// empty groups of parenthesis, and empty mbyte chars
if (stackp == stack)
{
s = alloc_state(mopen, NULL, NULL);
if (s == NULL)
goto theend;
s1 = alloc_state(mclose, NULL, NULL);
if (s1 == NULL)
goto theend;
patch(list1(&s->out), s1);
PUSH(frag(s, list1(&s1->out)));
break;
}
// At least one node was emitted before NFA_MOPEN, so
// at least one node will be between NFA_MOPEN and NFA_MCLOSE
e = POP();
s = alloc_state(mopen, e.start, NULL); // `('
if (s == NULL)
goto theend;
s1 = alloc_state(mclose, NULL, NULL); // `)'
if (s1 == NULL)
goto theend;
patch(e.out, s1);
if (mopen == NFA_COMPOSING)
// COMPOSING->out1 = END_COMPOSING
patch(list1(&s->out1), s1);
PUSH(frag(s, list1(&s1->out)));
break;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
#ifdef FEAT_SYN_HL
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
#endif
if (nfa_calc_size == TRUE)
{
nstate += 2;
break;
}
s = alloc_state(*p, NULL, NULL);
if (s == NULL)
goto theend;
s1 = alloc_state(NFA_SKIP, NULL, NULL);
if (s1 == NULL)
goto theend;
patch(list1(&s->out), s1);
PUSH(frag(s, list1(&s1->out)));
break;
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_MARK:
case NFA_MARK_GT:
case NFA_MARK_LT:
{
int n = *++p; // lnum, col or mark name
if (nfa_calc_size == TRUE)
{
nstate += 1;
break;
}
s = alloc_state(p[-1], NULL, NULL);
if (s == NULL)
goto theend;
s->val = n;
PUSH(frag(s, list1(&s->out)));
break;
}
case NFA_ZSTART:
case NFA_ZEND:
default:
// Operands
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
s = alloc_state(*p, NULL, NULL);
if (s == NULL)
goto theend;
PUSH(frag(s, list1(&s->out)));
break;
} // switch(*p)
} // for (p = postfix; *p; ++p)
if (nfa_calc_size == TRUE)
{
nstate++;
goto theend; // Return value when counting size is ignored anyway
}
e = POP();
if (stackp != stack)
{
vim_free(stack);
EMSG_RET_NULL(_(e_nfa_regexp_while_converting_from_postfix_to_nfa_too_many_stats_left_on_stack));
}
if (istate >= nstate)
{
vim_free(stack);
EMSG_RET_NULL(_(e_nfa_regexp_not_enough_space_to_store_whole_nfa));
}
matchstate = &state_ptr[istate++]; // the match state
matchstate->c = NFA_MATCH;
matchstate->out = matchstate->out1 = NULL;
matchstate->id = 0;
patch(e.out, matchstate);
ret = e.start;
theend:
vim_free(stack);
return ret;
#undef POP1
#undef PUSH1
#undef POP2
#undef PUSH2
#undef POP
#undef PUSH
}
/*
* After building the NFA program, inspect it to add optimization hints.
*/
static void
nfa_postprocess(nfa_regprog_T *prog)
{
int i;
int c;
for (i = 0; i < prog->nstate; ++i)
{
c = prog->state[i].c;
if (c == NFA_START_INVISIBLE
|| c == NFA_START_INVISIBLE_NEG
|| c == NFA_START_INVISIBLE_BEFORE
|| c == NFA_START_INVISIBLE_BEFORE_NEG)
{
int directly;
// Do it directly when what follows is possibly the end of the
// match.
if (match_follows(prog->state[i].out1->out, 0))
directly = TRUE;
else
{
int ch_invisible = failure_chance(prog->state[i].out, 0);
int ch_follows = failure_chance(prog->state[i].out1->out, 0);
// Postpone when the invisible match is expensive or has a
// lower chance of failing.
if (c == NFA_START_INVISIBLE_BEFORE
|| c == NFA_START_INVISIBLE_BEFORE_NEG)
{
// "before" matches are very expensive when
// unbounded, always prefer what follows then,
// unless what follows will always match.
// Otherwise strongly prefer what follows.
if (prog->state[i].val <= 0 && ch_follows > 0)
directly = FALSE;
else
directly = ch_follows * 10 < ch_invisible;
}
else
{
// normal invisible, first do the one with the
// highest failure chance
directly = ch_follows < ch_invisible;
}
}
if (directly)
// switch to the _FIRST state
++prog->state[i].c;
}
}
}
/////////////////////////////////////////////////////////////////
// NFA execution code.
/////////////////////////////////////////////////////////////////
typedef struct
{
int in_use; // number of subexpr with useful info
// When REG_MULTI is TRUE list.multi is used, otherwise list.line.
union
{
struct multipos
{
linenr_T start_lnum;
linenr_T end_lnum;
colnr_T start_col;
colnr_T end_col;
} multi[NSUBEXP];
struct linepos
{
char_u *start;
char_u *end;
} line[NSUBEXP];
} list;
colnr_T orig_start_col; // list.multi[0].start_col without \zs
} regsub_T;
typedef struct
{
regsub_T norm; // \( .. \) matches
#ifdef FEAT_SYN_HL
regsub_T synt; // \z( .. \) matches
#endif
} regsubs_T;
// nfa_pim_T stores a Postponed Invisible Match.
typedef struct nfa_pim_S nfa_pim_T;
struct nfa_pim_S
{
int result; // NFA_PIM_*, see below
nfa_state_T *state; // the invisible match start state
regsubs_T subs; // submatch info, only party used
union
{
lpos_T pos;
char_u *ptr;
} end; // where the match must end
};
// Values for done in nfa_pim_T.
#define NFA_PIM_UNUSED 0 // pim not used
#define NFA_PIM_TODO 1 // pim not done yet
#define NFA_PIM_MATCH 2 // pim executed, matches
#define NFA_PIM_NOMATCH 3 // pim executed, no match
// nfa_thread_T contains execution information of a NFA state
typedef struct
{
nfa_state_T *state;
int count;
nfa_pim_T pim; // if pim.result != NFA_PIM_UNUSED: postponed
// invisible match
regsubs_T subs; // submatch info, only party used
} nfa_thread_T;
// nfa_list_T contains the alternative NFA execution states.
typedef struct
{
nfa_thread_T *t; // allocated array of states
int n; // nr of states currently in "t"
int len; // max nr of states in "t"
int id; // ID of the list
int has_pim; // TRUE when any state has a PIM
} nfa_list_T;
#ifdef ENABLE_LOG
static void log_subexpr(regsub_T *sub);
static void
log_subsexpr(regsubs_T *subs)
{
log_subexpr(&subs->norm);
# ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
log_subexpr(&subs->synt);
# endif
}
static void
log_subexpr(regsub_T *sub)
{
int j;
for (j = 0; j < sub->in_use; j++)
if (REG_MULTI)
fprintf(log_fd,
"*** group %d, start: c=%d, l=%d, end: c=%d, l=%d\n",
j,
sub->list.multi[j].start_col,
(int)sub->list.multi[j].start_lnum,
sub->list.multi[j].end_col,
(int)sub->list.multi[j].end_lnum);
else
{
char *s = (char *)sub->list.line[j].start;
char *e = (char *)sub->list.line[j].end;
fprintf(log_fd, "*** group %d, start: \"%s\", end: \"%s\"\n",
j,
s == NULL ? "NULL" : s,
e == NULL ? "NULL" : e);
}
}
static char *
pim_info(nfa_pim_T *pim)
{
static char buf[30];
if (pim == NULL || pim->result == NFA_PIM_UNUSED)
buf[0] = NUL;
else
{
sprintf(buf, " PIM col %d", REG_MULTI ? (int)pim->end.pos.col
: (int)(pim->end.ptr - rex.input));
}
return buf;
}
#endif
// Used during execution: whether a match has been found.
static int nfa_match;
#ifdef FEAT_RELTIME
static int *nfa_timed_out;
#endif
static void copy_sub(regsub_T *to, regsub_T *from);
static int pim_equal(nfa_pim_T *one, nfa_pim_T *two);
/*
* Copy postponed invisible match info from "from" to "to".
*/
static void
copy_pim(nfa_pim_T *to, nfa_pim_T *from)
{
to->result = from->result;
to->state = from->state;
copy_sub(&to->subs.norm, &from->subs.norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub(&to->subs.synt, &from->subs.synt);
#endif
to->end = from->end;
}
static void
clear_sub(regsub_T *sub)
{
if (REG_MULTI)
// Use 0xff to set lnum to -1
vim_memset(sub->list.multi, 0xff,
sizeof(struct multipos) * rex.nfa_nsubexpr);
else
vim_memset(sub->list.line, 0,
sizeof(struct linepos) * rex.nfa_nsubexpr);
sub->in_use = 0;
}
/*
* Copy the submatches from "from" to "to".
*/
static void
copy_sub(regsub_T *to, regsub_T *from)
{
to->in_use = from->in_use;
if (from->in_use <= 0)
return;
// Copy the match start and end positions.
if (REG_MULTI)
{
mch_memmove(&to->list.multi[0],
&from->list.multi[0],
sizeof(struct multipos) * from->in_use);
to->orig_start_col = from->orig_start_col;
}
else
mch_memmove(&to->list.line[0],
&from->list.line[0],
sizeof(struct linepos) * from->in_use);
}
/*
* Like copy_sub() but exclude the main match.
*/
static void
copy_sub_off(regsub_T *to, regsub_T *from)
{
if (to->in_use < from->in_use)
to->in_use = from->in_use;
if (from->in_use <= 1)
return;
// Copy the match start and end positions.
if (REG_MULTI)
mch_memmove(&to->list.multi[1],
&from->list.multi[1],
sizeof(struct multipos) * (from->in_use - 1));
else
mch_memmove(&to->list.line[1],
&from->list.line[1],
sizeof(struct linepos) * (from->in_use - 1));
}
/*
* Like copy_sub() but only do the end of the main match if \ze is present.
*/
static void
copy_ze_off(regsub_T *to, regsub_T *from)
{
if (!rex.nfa_has_zend)
return;
if (REG_MULTI)
{
if (from->list.multi[0].end_lnum >= 0)
{
to->list.multi[0].end_lnum = from->list.multi[0].end_lnum;
to->list.multi[0].end_col = from->list.multi[0].end_col;
}
}
else
{
if (from->list.line[0].end != NULL)
to->list.line[0].end = from->list.line[0].end;
}
}
/*
* Return TRUE if "sub1" and "sub2" have the same start positions.
* When using back-references also check the end position.
*/
static int
sub_equal(regsub_T *sub1, regsub_T *sub2)
{
int i;
int todo;
linenr_T s1;
linenr_T s2;
char_u *sp1;
char_u *sp2;
todo = sub1->in_use > sub2->in_use ? sub1->in_use : sub2->in_use;
if (REG_MULTI)
{
for (i = 0; i < todo; ++i)
{
if (i < sub1->in_use)
s1 = sub1->list.multi[i].start_lnum;
else
s1 = -1;
if (i < sub2->in_use)
s2 = sub2->list.multi[i].start_lnum;
else
s2 = -1;
if (s1 != s2)
return FALSE;
if (s1 != -1 && sub1->list.multi[i].start_col
!= sub2->list.multi[i].start_col)
return FALSE;
if (rex.nfa_has_backref)
{
if (i < sub1->in_use)
s1 = sub1->list.multi[i].end_lnum;
else
s1 = -1;
if (i < sub2->in_use)
s2 = sub2->list.multi[i].end_lnum;
else
s2 = -1;
if (s1 != s2)
return FALSE;
if (s1 != -1 && sub1->list.multi[i].end_col
!= sub2->list.multi[i].end_col)
return FALSE;
}
}
}
else
{
for (i = 0; i < todo; ++i)
{
if (i < sub1->in_use)
sp1 = sub1->list.line[i].start;
else
sp1 = NULL;
if (i < sub2->in_use)
sp2 = sub2->list.line[i].start;
else
sp2 = NULL;
if (sp1 != sp2)
return FALSE;
if (rex.nfa_has_backref)
{
if (i < sub1->in_use)
sp1 = sub1->list.line[i].end;
else
sp1 = NULL;
if (i < sub2->in_use)
sp2 = sub2->list.line[i].end;
else
sp2 = NULL;
if (sp1 != sp2)
return FALSE;
}
}
}
return TRUE;
}
#ifdef FEAT_RELTIME
/*
* Check if we are past the time limit, if there is one.
*/
static int
nfa_did_time_out(void)
{
if (*timeout_flag)
{
if (nfa_timed_out != NULL)
{
# ifdef FEAT_EVAL
if (!*nfa_timed_out)
ch_log(NULL, "NFA regexp timed out");
# endif
*nfa_timed_out = TRUE;
}
return TRUE;
}
return FALSE;
}
#endif
#ifdef ENABLE_LOG
static void
open_debug_log(int result)
{
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
if (log_fd == NULL)
{
emsg(_(e_log_open_failed));
log_fd = stderr;
}
fprintf(log_fd, "****************************\n");
fprintf(log_fd, "FINISHED RUNNING nfa_regmatch() recursively\n");
fprintf(log_fd, "MATCH = %s\n", result == TRUE ? "OK" : result == MAYBE
? "MAYBE" : "FALSE");
fprintf(log_fd, "****************************\n");
}
static void
report_state(char *action,
regsub_T *sub,
nfa_state_T *state,
int lid,
nfa_pim_T *pim)
{
int col;
if (sub->in_use <= 0)
col = -1;
else if (REG_MULTI)
col = sub->list.multi[0].start_col;
else
col = (int)(sub->list.line[0].start - rex.line);
nfa_set_code(state->c);
if (log_fd == NULL)
open_debug_log(MAYBE);
fprintf(log_fd, "> %s state %d to list %d. char %d: %s (start col %d)%s\n",
action, abs(state->id), lid, state->c, code, col,
pim_info(pim));
}
#endif
/*
* Return TRUE if the same state is already in list "l" with the same
* positions as "subs".
*/
static int
has_state_with_pos(
nfa_list_T *l, // runtime state list
nfa_state_T *state, // state to update
regsubs_T *subs, // pointers to subexpressions
nfa_pim_T *pim) // postponed match or NULL
{
nfa_thread_T *thread;
int i;
for (i = 0; i < l->n; ++i)
{
thread = &l->t[i];
if (thread->state->id == state->id
&& sub_equal(&thread->subs.norm, &subs->norm)
#ifdef FEAT_SYN_HL
&& (!rex.nfa_has_zsubexpr
|| sub_equal(&thread->subs.synt, &subs->synt))
#endif
&& pim_equal(&thread->pim, pim))
return TRUE;
}
return FALSE;
}
/*
* Return TRUE if "one" and "two" are equal. That includes when both are not
* set.
*/
static int
pim_equal(nfa_pim_T *one, nfa_pim_T *two)
{
int one_unused = (one == NULL || one->result == NFA_PIM_UNUSED);
int two_unused = (two == NULL || two->result == NFA_PIM_UNUSED);
if (one_unused)
// one is unused: equal when two is also unused
return two_unused;
if (two_unused)
// one is used and two is not: not equal
return FALSE;
// compare the state id
if (one->state->id != two->state->id)
return FALSE;
// compare the position
if (REG_MULTI)
return one->end.pos.lnum == two->end.pos.lnum
&& one->end.pos.col == two->end.pos.col;
return one->end.ptr == two->end.ptr;
}
/*
* Return TRUE if "state" leads to a NFA_MATCH without advancing the input.
*/
static int
match_follows(nfa_state_T *startstate, int depth)
{
nfa_state_T *state = startstate;
// avoid too much recursion
if (depth > 10)
return FALSE;
while (state != NULL)
{
switch (state->c)
{
case NFA_MATCH:
case NFA_MCLOSE:
case NFA_END_INVISIBLE:
case NFA_END_INVISIBLE_NEG:
case NFA_END_PATTERN:
return TRUE;
case NFA_SPLIT:
return match_follows(state->out, depth + 1)
|| match_follows(state->out1, depth + 1);
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_FIRST:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_FIRST:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_NEG_FIRST:
case NFA_START_INVISIBLE_BEFORE_NEG:
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
case NFA_COMPOSING:
// skip ahead to next state
state = state->out1->out;
continue;
case NFA_ANY:
case NFA_ANY_COMPOSING:
case NFA_IDENT:
case NFA_SIDENT:
case NFA_KWORD:
case NFA_SKWORD:
case NFA_FNAME:
case NFA_SFNAME:
case NFA_PRINT:
case NFA_SPRINT:
case NFA_WHITE:
case NFA_NWHITE:
case NFA_DIGIT:
case NFA_NDIGIT:
case NFA_HEX:
case NFA_NHEX:
case NFA_OCTAL:
case NFA_NOCTAL:
case NFA_WORD:
case NFA_NWORD:
case NFA_HEAD:
case NFA_NHEAD:
case NFA_ALPHA:
case NFA_NALPHA:
case NFA_LOWER:
case NFA_NLOWER:
case NFA_UPPER:
case NFA_NUPPER:
case NFA_LOWER_IC:
case NFA_NLOWER_IC:
case NFA_UPPER_IC:
case NFA_NUPPER_IC:
case NFA_START_COLL:
case NFA_START_NEG_COLL:
case NFA_NEWL:
// state will advance input
return FALSE;
default:
if (state->c > 0)
// state will advance input
return FALSE;
// Others: zero-width or possibly zero-width, might still find
// a match at the same position, keep looking.
break;
}
state = state->out;
}
return FALSE;
}
/*
* Return TRUE if "state" is already in list "l".
*/
static int
state_in_list(
nfa_list_T *l, // runtime state list
nfa_state_T *state, // state to update
regsubs_T *subs) // pointers to subexpressions
{
if (state->lastlist[nfa_ll_index] == l->id)
{
if (!rex.nfa_has_backref || has_state_with_pos(l, state, subs, NULL))
return TRUE;
}
return FALSE;
}
// Offset used for "off" by addstate_here().
#define ADDSTATE_HERE_OFFSET 10
/*
* Add "state" and possibly what follows to state list ".".
* Returns "subs_arg", possibly copied into temp_subs.
* Returns NULL when recursiveness is too deep or timed out.
*/
static regsubs_T *
addstate(
nfa_list_T *l, // runtime state list
nfa_state_T *state, // state to update
regsubs_T *subs_arg, // pointers to subexpressions
nfa_pim_T *pim, // postponed look-behind match
int off_arg) // byte offset, when -1 go to next line
{
int subidx;
int off = off_arg;
int add_here = FALSE;
int listindex = 0;
int k;
int found = FALSE;
nfa_thread_T *thread;
struct multipos save_multipos;
int save_in_use;
char_u *save_ptr;
int i;
regsub_T *sub;
regsubs_T *subs = subs_arg;
static regsubs_T temp_subs;
#ifdef ENABLE_LOG
int did_print = FALSE;
#endif
static int depth = 0;
#ifdef FEAT_RELTIME
if (nfa_did_time_out())
return NULL;
#endif
// This function is called recursively. When the depth is too much we run
// out of stack and crash, limit recursiveness here.
if (++depth >= 5000 || subs == NULL)
{
--depth;
return NULL;
}
if (off_arg <= -ADDSTATE_HERE_OFFSET)
{
add_here = TRUE;
off = 0;
listindex = -(off_arg + ADDSTATE_HERE_OFFSET);
}
switch (state->c)
{
case NFA_NCLOSE:
case NFA_MCLOSE:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
#ifdef FEAT_SYN_HL
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
#endif
case NFA_MOPEN:
case NFA_ZEND:
case NFA_SPLIT:
case NFA_EMPTY:
// These nodes are not added themselves but their "out" and/or
// "out1" may be added below.
break;
case NFA_BOL:
case NFA_BOF:
// "^" won't match past end-of-line, don't bother trying.
// Except when at the end of the line, or when we are going to the
// next line for a look-behind match.
if (rex.input > rex.line
&& *rex.input != NUL
&& (nfa_endp == NULL
|| !REG_MULTI
|| rex.lnum == nfa_endp->se_u.pos.lnum))
goto skip_add;
// FALLTHROUGH
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
#ifdef FEAT_SYN_HL
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
#endif
case NFA_NOPEN:
case NFA_ZSTART:
// These nodes need to be added so that we can bail out when it
// was added to this list before at the same position to avoid an
// endless loop for "\(\)*"
default:
if (state->lastlist[nfa_ll_index] == l->id && state->c != NFA_SKIP)
{
// This state is already in the list, don't add it again,
// unless it is an MOPEN that is used for a backreference or
// when there is a PIM. For NFA_MATCH check the position,
// lower position is preferred.
if (!rex.nfa_has_backref && pim == NULL && !l->has_pim
&& state->c != NFA_MATCH)
{
// When called from addstate_here() do insert before
// existing states.
if (add_here)
{
for (k = 0; k < l->n && k < listindex; ++k)
if (l->t[k].state->id == state->id)
{
found = TRUE;
break;
}
}
if (!add_here || found)
{
skip_add:
#ifdef ENABLE_LOG
nfa_set_code(state->c);
fprintf(log_fd, "> Not adding state %d to list %d. char %d: %s pim: %s has_pim: %d found: %d\n",
abs(state->id), l->id, state->c, code,
pim == NULL ? "NULL" : "yes", l->has_pim, found);
#endif
--depth;
return subs;
}
}
// Do not add the state again when it exists with the same
// positions.
if (has_state_with_pos(l, state, subs, pim))
goto skip_add;
}
// When there are backreferences or PIMs the number of states may
// be (a lot) bigger than anticipated.
if (l->n == l->len)
{
int newlen = l->len * 3 / 2 + 50;
size_t newsize = newlen * sizeof(nfa_thread_T);
nfa_thread_T *newt;
if ((long)(newsize >> 10) >= p_mmp)
{
emsg(_(e_pattern_uses_more_memory_than_maxmempattern));
--depth;
return NULL;
}
if (subs != &temp_subs)
{
// "subs" may point into the current array, need to make a
// copy before it becomes invalid.
copy_sub(&temp_subs.norm, &subs->norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub(&temp_subs.synt, &subs->synt);
#endif
subs = &temp_subs;
}
newt = vim_realloc(l->t, newsize);
if (newt == NULL)
{
// out of memory
--depth;
return NULL;
}
l->t = newt;
l->len = newlen;
}
// add the state to the list
state->lastlist[nfa_ll_index] = l->id;
thread = &l->t[l->n++];
thread->state = state;
if (pim == NULL)
thread->pim.result = NFA_PIM_UNUSED;
else
{
copy_pim(&thread->pim, pim);
l->has_pim = TRUE;
}
copy_sub(&thread->subs.norm, &subs->norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub(&thread->subs.synt, &subs->synt);
#endif
#ifdef ENABLE_LOG
report_state("Adding", &thread->subs.norm, state, l->id, pim);
did_print = TRUE;
#endif
}
#ifdef ENABLE_LOG
if (!did_print)
report_state("Processing", &subs->norm, state, l->id, pim);
#endif
switch (state->c)
{
case NFA_MATCH:
break;
case NFA_SPLIT:
// order matters here
subs = addstate(l, state->out, subs, pim, off_arg);
subs = addstate(l, state->out1, subs, pim, off_arg);
break;
case NFA_EMPTY:
case NFA_NOPEN:
case NFA_NCLOSE:
subs = addstate(l, state->out, subs, pim, off_arg);
break;
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
#ifdef FEAT_SYN_HL
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
#endif
case NFA_ZSTART:
if (state->c == NFA_ZSTART)
{
subidx = 0;
sub = &subs->norm;
}
#ifdef FEAT_SYN_HL
else if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9)
{
subidx = state->c - NFA_ZOPEN;
sub = &subs->synt;
}
#endif
else
{
subidx = state->c - NFA_MOPEN;
sub = &subs->norm;
}
// avoid compiler warnings
save_ptr = NULL;
CLEAR_FIELD(save_multipos);
// Set the position (with "off" added) in the subexpression. Save
// and restore it when it was in use. Otherwise fill any gap.
if (REG_MULTI)
{
if (subidx < sub->in_use)
{
save_multipos = sub->list.multi[subidx];
save_in_use = -1;
}
else
{
save_in_use = sub->in_use;
for (i = sub->in_use; i < subidx; ++i)
{
sub->list.multi[i].start_lnum = -1;
sub->list.multi[i].end_lnum = -1;
}
sub->in_use = subidx + 1;
}
if (off == -1)
{
sub->list.multi[subidx].start_lnum = rex.lnum + 1;
sub->list.multi[subidx].start_col = 0;
}
else
{
sub->list.multi[subidx].start_lnum = rex.lnum;
sub->list.multi[subidx].start_col =
(colnr_T)(rex.input - rex.line + off);
}
sub->list.multi[subidx].end_lnum = -1;
}
else
{
if (subidx < sub->in_use)
{
save_ptr = sub->list.line[subidx].start;
save_in_use = -1;
}
else
{
save_in_use = sub->in_use;
for (i = sub->in_use; i < subidx; ++i)
{
sub->list.line[i].start = NULL;
sub->list.line[i].end = NULL;
}
sub->in_use = subidx + 1;
}
sub->list.line[subidx].start = rex.input + off;
}
subs = addstate(l, state->out, subs, pim, off_arg);
if (subs == NULL)
break;
// "subs" may have changed, need to set "sub" again
#ifdef FEAT_SYN_HL
if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9)
sub = &subs->synt;
else
#endif
sub = &subs->norm;
if (save_in_use == -1)
{
if (REG_MULTI)
sub->list.multi[subidx] = save_multipos;
else
sub->list.line[subidx].start = save_ptr;
}
else
sub->in_use = save_in_use;
break;
case NFA_MCLOSE:
if (rex.nfa_has_zend && (REG_MULTI
? subs->norm.list.multi[0].end_lnum >= 0
: subs->norm.list.line[0].end != NULL))
{
// Do not overwrite the position set by \ze.
subs = addstate(l, state->out, subs, pim, off_arg);
break;
}
// FALLTHROUGH
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
#ifdef FEAT_SYN_HL
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
#endif
case NFA_ZEND:
if (state->c == NFA_ZEND)
{
subidx = 0;
sub = &subs->norm;
}
#ifdef FEAT_SYN_HL
else if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9)
{
subidx = state->c - NFA_ZCLOSE;
sub = &subs->synt;
}
#endif
else
{
subidx = state->c - NFA_MCLOSE;
sub = &subs->norm;
}
// We don't fill in gaps here, there must have been an MOPEN that
// has done that.
save_in_use = sub->in_use;
if (sub->in_use <= subidx)
sub->in_use = subidx + 1;
if (REG_MULTI)
{
save_multipos = sub->list.multi[subidx];
if (off == -1)
{
sub->list.multi[subidx].end_lnum = rex.lnum + 1;
sub->list.multi[subidx].end_col = 0;
}
else
{
sub->list.multi[subidx].end_lnum = rex.lnum;
sub->list.multi[subidx].end_col =
(colnr_T)(rex.input - rex.line + off);
}
// avoid compiler warnings
save_ptr = NULL;
}
else
{
save_ptr = sub->list.line[subidx].end;
sub->list.line[subidx].end = rex.input + off;
// avoid compiler warnings
CLEAR_FIELD(save_multipos);
}
subs = addstate(l, state->out, subs, pim, off_arg);
if (subs == NULL)
break;
// "subs" may have changed, need to set "sub" again
#ifdef FEAT_SYN_HL
if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9)
sub = &subs->synt;
else
#endif
sub = &subs->norm;
if (REG_MULTI)
sub->list.multi[subidx] = save_multipos;
else
sub->list.line[subidx].end = save_ptr;
sub->in_use = save_in_use;
break;
}
--depth;
return subs;
}
/*
* Like addstate(), but the new state(s) are put at position "*ip".
* Used for zero-width matches, next state to use is the added one.
* This makes sure the order of states to be tried does not change, which
* matters for alternatives.
*/
static regsubs_T *
addstate_here(
nfa_list_T *l, // runtime state list
nfa_state_T *state, // state to update
regsubs_T *subs, // pointers to subexpressions
nfa_pim_T *pim, // postponed look-behind match
int *ip)
{
int tlen = l->n;
int count;
int listidx = *ip;
regsubs_T *r;
// First add the state(s) at the end, so that we know how many there are.
// Pass the listidx as offset (avoids adding another argument to
// addstate()).
r = addstate(l, state, subs, pim, -listidx - ADDSTATE_HERE_OFFSET);
if (r == NULL)
return NULL;
// when "*ip" was at the end of the list, nothing to do
if (listidx + 1 == tlen)
return r;
// re-order to put the new state at the current position
count = l->n - tlen;
if (count == 0)
return r; // no state got added
if (count == 1)
{
// overwrite the current state
l->t[listidx] = l->t[l->n - 1];
}
else if (count > 1)
{
if (l->n + count - 1 >= l->len)
{
// not enough space to move the new states, reallocate the list
// and move the states to the right position
int newlen = l->len * 3 / 2 + 50;
size_t newsize = newlen * sizeof(nfa_thread_T);
nfa_thread_T *newl;
if ((long)(newsize >> 10) >= p_mmp)
{
emsg(_(e_pattern_uses_more_memory_than_maxmempattern));
return NULL;
}
newl = alloc(newsize);
if (newl == NULL)
return NULL;
l->len = newlen;
mch_memmove(&(newl[0]),
&(l->t[0]),
sizeof(nfa_thread_T) * listidx);
mch_memmove(&(newl[listidx]),
&(l->t[l->n - count]),
sizeof(nfa_thread_T) * count);
mch_memmove(&(newl[listidx + count]),
&(l->t[listidx + 1]),
sizeof(nfa_thread_T) * (l->n - count - listidx - 1));
vim_free(l->t);
l->t = newl;
}
else
{
// make space for new states, then move them from the
// end to the current position
mch_memmove(&(l->t[listidx + count]),
&(l->t[listidx + 1]),
sizeof(nfa_thread_T) * (l->n - listidx - 1));
mch_memmove(&(l->t[listidx]),
&(l->t[l->n - 1]),
sizeof(nfa_thread_T) * count);
}
}
--l->n;
*ip = listidx - 1;
return r;
}
/*
* Check character class "class" against current character c.
*/
static int
check_char_class(int class, int c)
{
switch (class)
{
case NFA_CLASS_ALNUM:
if (c >= 1 && c < 128 && isalnum(c))
return OK;
break;
case NFA_CLASS_ALPHA:
if (c >= 1 && c < 128 && isalpha(c))
return OK;
break;
case NFA_CLASS_BLANK:
if (c == ' ' || c == '\t')
return OK;
break;
case NFA_CLASS_CNTRL:
if (c >= 1 && c <= 127 && iscntrl(c))
return OK;
break;
case NFA_CLASS_DIGIT:
if (VIM_ISDIGIT(c))
return OK;
break;
case NFA_CLASS_GRAPH:
if (c >= 1 && c <= 127 && isgraph(c))
return OK;
break;
case NFA_CLASS_LOWER:
if (MB_ISLOWER(c) && c != 170 && c != 186)
return OK;
break;
case NFA_CLASS_PRINT:
if (vim_isprintc(c))
return OK;
break;
case NFA_CLASS_PUNCT:
if (c >= 1 && c < 128 && ispunct(c))
return OK;
break;
case NFA_CLASS_SPACE:
if ((c >= 9 && c <= 13) || (c == ' '))
return OK;
break;
case NFA_CLASS_UPPER:
if (MB_ISUPPER(c))
return OK;
break;
case NFA_CLASS_XDIGIT:
if (vim_isxdigit(c))
return OK;
break;
case NFA_CLASS_TAB:
if (c == '\t')
return OK;
break;
case NFA_CLASS_RETURN:
if (c == '\r')
return OK;
break;
case NFA_CLASS_BACKSPACE:
if (c == '\b')
return OK;
break;
case NFA_CLASS_ESCAPE:
if (c == '\033')
return OK;
break;
case NFA_CLASS_IDENT:
if (vim_isIDc(c))
return OK;
break;
case NFA_CLASS_KEYWORD:
if (reg_iswordc(c))
return OK;
break;
case NFA_CLASS_FNAME:
if (vim_isfilec(c))
return OK;
break;
default:
// should not be here :P
siemsg(_(e_nfa_regexp_invalid_character_class_nr), class);
return FAIL;
}
return FAIL;
}
/*
* Check for a match with subexpression "subidx".
* Return TRUE if it matches.
*/
static int
match_backref(
regsub_T *sub, // pointers to subexpressions
int subidx,
int *bytelen) // out: length of match in bytes
{
int len;
if (sub->in_use <= subidx)
{
retempty:
// backref was not set, match an empty string
*bytelen = 0;
return TRUE;
}
if (REG_MULTI)
{
if (sub->list.multi[subidx].start_lnum < 0
|| sub->list.multi[subidx].end_lnum < 0)
goto retempty;
if (sub->list.multi[subidx].start_lnum == rex.lnum
&& sub->list.multi[subidx].end_lnum == rex.lnum)
{
len = sub->list.multi[subidx].end_col
- sub->list.multi[subidx].start_col;
if (cstrncmp(rex.line + sub->list.multi[subidx].start_col,
rex.input, &len) == 0)
{
*bytelen = len;
return TRUE;
}
}
else
{
if (match_with_backref(
sub->list.multi[subidx].start_lnum,
sub->list.multi[subidx].start_col,
sub->list.multi[subidx].end_lnum,
sub->list.multi[subidx].end_col,
bytelen) == RA_MATCH)
return TRUE;
}
}
else
{
if (sub->list.line[subidx].start == NULL
|| sub->list.line[subidx].end == NULL)
goto retempty;
len = (int)(sub->list.line[subidx].end - sub->list.line[subidx].start);
if (cstrncmp(sub->list.line[subidx].start, rex.input, &len) == 0)
{
*bytelen = len;
return TRUE;
}
}
return FALSE;
}
#ifdef FEAT_SYN_HL
/*
* Check for a match with \z subexpression "subidx".
* Return TRUE if it matches.
*/
static int
match_zref(
int subidx,
int *bytelen) // out: length of match in bytes
{
int len;
cleanup_zsubexpr();
if (re_extmatch_in == NULL || re_extmatch_in->matches[subidx] == NULL)
{
// backref was not set, match an empty string
*bytelen = 0;
return TRUE;
}
len = (int)STRLEN(re_extmatch_in->matches[subidx]);
if (cstrncmp(re_extmatch_in->matches[subidx], rex.input, &len) == 0)
{
*bytelen = len;
return TRUE;
}
return FALSE;
}
#endif
/*
* Save list IDs for all NFA states of "prog" into "list".
* Also reset the IDs to zero.
* Only used for the recursive value lastlist[1].
*/
static void
nfa_save_listids(nfa_regprog_T *prog, int *list)
{
int i;
nfa_state_T *p;
// Order in the list is reverse, it's a bit faster that way.
p = &prog->state[0];
for (i = prog->nstate; --i >= 0; )
{
list[i] = p->lastlist[1];
p->lastlist[1] = 0;
++p;
}
}
/*
* Restore list IDs from "list" to all NFA states.
*/
static void
nfa_restore_listids(nfa_regprog_T *prog, int *list)
{
int i;
nfa_state_T *p;
p = &prog->state[0];
for (i = prog->nstate; --i >= 0; )
{
p->lastlist[1] = list[i];
++p;
}
}
static int
nfa_re_num_cmp(long_u val, int op, long_u pos)
{
if (op == 1) return pos > val;
if (op == 2) return pos < val;
return val == pos;
}
static int nfa_regmatch(nfa_regprog_T *prog, nfa_state_T *start, regsubs_T *submatch, regsubs_T *m);
/*
* Recursively call nfa_regmatch()
* "pim" is NULL or contains info about a Postponed Invisible Match (start
* position).
*/
static int
recursive_regmatch(
nfa_state_T *state,
nfa_pim_T *pim,
nfa_regprog_T *prog,
regsubs_T *submatch,
regsubs_T *m,
int **listids,
int *listids_len)
{
int save_reginput_col = (int)(rex.input - rex.line);
int save_reglnum = rex.lnum;
int save_nfa_match = nfa_match;
int save_nfa_listid = rex.nfa_listid;
save_se_T *save_nfa_endp = nfa_endp;
save_se_T endpos;
save_se_T *endposp = NULL;
int result;
int need_restore = FALSE;
if (pim != NULL)
{
// start at the position where the postponed match was
if (REG_MULTI)
rex.input = rex.line + pim->end.pos.col;
else
rex.input = pim->end.ptr;
}
if (state->c == NFA_START_INVISIBLE_BEFORE
|| state->c == NFA_START_INVISIBLE_BEFORE_FIRST
|| state->c == NFA_START_INVISIBLE_BEFORE_NEG
|| state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)
{
// The recursive match must end at the current position. When "pim" is
// not NULL it specifies the current position.
endposp = &endpos;
if (REG_MULTI)
{
if (pim == NULL)
{
endpos.se_u.pos.col = (int)(rex.input - rex.line);
endpos.se_u.pos.lnum = rex.lnum;
}
else
endpos.se_u.pos = pim->end.pos;
}
else
{
if (pim == NULL)
endpos.se_u.ptr = rex.input;
else
endpos.se_u.ptr = pim->end.ptr;
}
// Go back the specified number of bytes, or as far as the
// start of the previous line, to try matching "\@<=" or
// not matching "\@<!". This is very inefficient, limit the number of
// bytes if possible.
if (state->val <= 0)
{
if (REG_MULTI)
{
rex.line = reg_getline(--rex.lnum);
if (rex.line == NULL)
// can't go before the first line
rex.line = reg_getline(++rex.lnum);
}
rex.input = rex.line;
}
else
{
if (REG_MULTI && (int)(rex.input - rex.line) < state->val)
{
// Not enough bytes in this line, go to end of
// previous line.
rex.line = reg_getline(--rex.lnum);
if (rex.line == NULL)
{
// can't go before the first line
rex.line = reg_getline(++rex.lnum);
rex.input = rex.line;
}
else
rex.input = rex.line + reg_getline_len(rex.lnum);
}
if ((int)(rex.input - rex.line) >= state->val)
{
rex.input -= state->val;
if (has_mbyte)
rex.input -= mb_head_off(rex.line, rex.input);
}
else
rex.input = rex.line;
}
}
#ifdef ENABLE_LOG
if (log_fd != stderr)
fclose(log_fd);
log_fd = NULL;
#endif
// Have to clear the lastlist field of the NFA nodes, so that
// nfa_regmatch() and addstate() can run properly after recursion.
if (nfa_ll_index == 1)
{
// Already calling nfa_regmatch() recursively. Save the lastlist[1]
// values and clear them.
if (*listids == NULL || *listids_len < prog->nstate)
{
vim_free(*listids);
*listids = ALLOC_MULT(int, prog->nstate);
if (*listids == NULL)
{
emsg(_(e_nfa_regexp_could_not_allocate_memory_for_branch_traversal));
return 0;
}
*listids_len = prog->nstate;
}
nfa_save_listids(prog, *listids);
need_restore = TRUE;
// any value of rex.nfa_listid will do
}
else
{
// First recursive nfa_regmatch() call, switch to the second lastlist
// entry. Make sure rex.nfa_listid is different from a previous
// recursive call, because some states may still have this ID.
++nfa_ll_index;
if (rex.nfa_listid <= rex.nfa_alt_listid)
rex.nfa_listid = rex.nfa_alt_listid;
}
// Call nfa_regmatch() to check if the current concat matches at this
// position. The concat ends with the node NFA_END_INVISIBLE
nfa_endp = endposp;
result = nfa_regmatch(prog, state->out, submatch, m);
if (need_restore)
nfa_restore_listids(prog, *listids);
else
{
--nfa_ll_index;
rex.nfa_alt_listid = rex.nfa_listid;
}
// restore position in input text
rex.lnum = save_reglnum;
if (REG_MULTI)
rex.line = reg_getline(rex.lnum);
rex.input = rex.line + save_reginput_col;
if (result != NFA_TOO_EXPENSIVE)
{
nfa_match = save_nfa_match;
rex.nfa_listid = save_nfa_listid;
}
nfa_endp = save_nfa_endp;
#ifdef ENABLE_LOG
open_debug_log(result);
#endif
return result;
}
/*
* Estimate the chance of a match with "state" failing.
* empty match: 0
* NFA_ANY: 1
* specific character: 99
*/
static int
failure_chance(nfa_state_T *state, int depth)
{
int c = state->c;
int l, r;
// detect looping
if (depth > 4)
return 1;
switch (c)
{
case NFA_SPLIT:
if (state->out->c == NFA_SPLIT || state->out1->c == NFA_SPLIT)
// avoid recursive stuff
return 1;
// two alternatives, use the lowest failure chance
l = failure_chance(state->out, depth + 1);
r = failure_chance(state->out1, depth + 1);
return l < r ? l : r;
case NFA_ANY:
// matches anything, unlikely to fail
return 1;
case NFA_MATCH:
case NFA_MCLOSE:
case NFA_ANY_COMPOSING:
// empty match works always
return 0;
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_FIRST:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_NEG_FIRST:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_FIRST:
case NFA_START_INVISIBLE_BEFORE_NEG:
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
case NFA_START_PATTERN:
// recursive regmatch is expensive, use low failure chance
return 5;
case NFA_BOL:
case NFA_EOL:
case NFA_BOF:
case NFA_EOF:
case NFA_NEWL:
return 99;
case NFA_BOW:
case NFA_EOW:
return 90;
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
#ifdef FEAT_SYN_HL
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
#endif
case NFA_NOPEN:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
case NFA_NCLOSE:
return failure_chance(state->out, depth + 1);
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
#ifdef FEAT_SYN_HL
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
#endif
// backreferences don't match in many places
return 94;
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_MARK_GT:
case NFA_MARK_LT:
case NFA_VISUAL:
// before/after positions don't match very often
return 85;
case NFA_LNUM:
return 90;
case NFA_CURSOR:
case NFA_COL:
case NFA_VCOL:
case NFA_MARK:
// specific positions rarely match
return 98;
case NFA_COMPOSING:
return 95;
default:
if (c > 0)
// character match fails often
return 95;
}
// something else, includes character classes
return 50;
}
/*
* Skip until the char "c" we know a match must start with.
*/
static int
skip_to_start(int c, colnr_T *colp)
{
char_u *s;
// Used often, do some work to avoid call overhead.
if (!rex.reg_ic && !has_mbyte)
s = vim_strbyte(rex.line + *colp, c);
else
s = cstrchr(rex.line + *colp, c);
if (s == NULL)
return FAIL;
*colp = (int)(s - rex.line);
return OK;
}
/*
* Check for a match with match_text.
* Called after skip_to_start() has found regstart.
* Returns zero for no match, 1 for a match.
*/
static long
find_match_text(colnr_T *startcol, int regstart, char_u *match_text)
{
colnr_T col = *startcol;
int c1, c2;
int len1, len2;
int match;
for (;;)
{
match = TRUE;
// skip regstart
len2 = MB_CHAR2LEN(regstart);
if (enc_utf8 && len2 > 1 && MB_CHAR2LEN(PTR2CHAR(rex.line + col)) != len2)
// because of case-folding of the previously matched text, we may need
// to skip fewer bytes than mb_char2len(regstart)
len2 = mb_char2len(utf_fold(regstart));
for (len1 = 0; match_text[len1] != NUL; len1 += MB_CHAR2LEN(c1))
{
c1 = PTR2CHAR(match_text + len1);
c2 = PTR2CHAR(rex.line + col + len2);
if (c1 != c2 && (!rex.reg_ic || MB_CASEFOLD(c1) != MB_CASEFOLD(c2)))
{
match = FALSE;
break;
}
len2 += enc_utf8 ? utf_ptr2len(rex.line + col + len2)
: MB_CHAR2LEN(c2);
}
if (match
// check that no composing char follows
&& !(enc_utf8
&& utf_iscomposing(PTR2CHAR(rex.line + col + len2))))
{
cleanup_subexpr();
if (REG_MULTI)
{
rex.reg_startpos[0].lnum = rex.lnum;
rex.reg_startpos[0].col = col;
rex.reg_endpos[0].lnum = rex.lnum;
rex.reg_endpos[0].col = col + len2;
}
else
{
rex.reg_startp[0] = rex.line + col;
rex.reg_endp[0] = rex.line + col + len2;
}
*startcol = col;
return 1L;
}
// Try finding regstart after the current match.
col += MB_CHAR2LEN(regstart); // skip regstart
if (skip_to_start(regstart, &col) == FAIL)
break;
}
*startcol = col;
return 0L;
}
/*
* Main matching routine.
*
* Run NFA to determine whether it matches rex.input.
*
* When "nfa_endp" is not NULL it is a required end-of-match position.
*
* Return TRUE if there is a match, FALSE if there is no match,
* NFA_TOO_EXPENSIVE if we end up with too many states.
* When there is a match "submatch" contains the positions.
*
* Note: Caller must ensure that: start != NULL.
*/
static int
nfa_regmatch(
nfa_regprog_T *prog,
nfa_state_T *start,
regsubs_T *submatch,
regsubs_T *m)
{
int result = FALSE;
size_t size = 0;
int flag = 0;
int go_to_nextline = FALSE;
nfa_thread_T *t;
nfa_list_T list[2];
int listidx;
nfa_list_T *thislist;
nfa_list_T *nextlist;
int *listids = NULL;
int listids_len = 0;
nfa_state_T *add_state;
int add_here;
int add_count;
int add_off = 0;
int toplevel = start->c == NFA_MOPEN;
regsubs_T *r;
#ifdef NFA_REGEXP_DEBUG_LOG
FILE *debug;
#endif
// Some patterns may take a long time to match, especially when using
// recursive_regmatch(). Allow interrupting them with CTRL-C.
fast_breakcheck();
if (got_int)
return FALSE;
#ifdef FEAT_RELTIME
if (nfa_did_time_out())
return FALSE;
#endif
#ifdef NFA_REGEXP_DEBUG_LOG
debug = fopen(NFA_REGEXP_DEBUG_LOG, "a");
if (debug == NULL)
{
semsg("(NFA) COULD NOT OPEN %s!", NFA_REGEXP_DEBUG_LOG);
return FALSE;
}
#endif
nfa_match = FALSE;
// Allocate memory for the lists of nodes.
size = (prog->nstate + 1) * sizeof(nfa_thread_T);
list[0].t = alloc(size);
list[0].len = prog->nstate + 1;
list[1].t = alloc(size);
list[1].len = prog->nstate + 1;
if (list[0].t == NULL || list[1].t == NULL)
goto theend;
#ifdef ENABLE_LOG
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
if (log_fd == NULL)
{
emsg(_(e_log_open_failed));
log_fd = stderr;
}
fprintf(log_fd, "**********************************\n");
nfa_set_code(start->c);
fprintf(log_fd, " RUNNING nfa_regmatch() starting with state %d, code %s\n",
abs(start->id), code);
fprintf(log_fd, "**********************************\n");
#endif
thislist = &list[0];
thislist->n = 0;
thislist->has_pim = FALSE;
nextlist = &list[1];
nextlist->n = 0;
nextlist->has_pim = FALSE;
#ifdef ENABLE_LOG
fprintf(log_fd, "(---) STARTSTATE first\n");
#endif
thislist->id = rex.nfa_listid + 1;
// Inline optimized code for addstate(thislist, start, m, 0) if we know
// it's the first MOPEN.
if (toplevel)
{
if (REG_MULTI)
{
m->norm.list.multi[0].start_lnum = rex.lnum;
m->norm.list.multi[0].start_col = (colnr_T)(rex.input - rex.line);
m->norm.orig_start_col = m->norm.list.multi[0].start_col;
}
else
m->norm.list.line[0].start = rex.input;
m->norm.in_use = 1;
r = addstate(thislist, start->out, m, NULL, 0);
}
else
r = addstate(thislist, start, m, NULL, 0);
if (r == NULL)
{
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
#define ADD_STATE_IF_MATCH(state) \
if (result) \
{ \
add_state = state->out; \
add_off = clen; \
}
/*
* Run for each character.
*/
for (;;)
{
int curc;
int clen;
if (has_mbyte)
{
curc = (*mb_ptr2char)(rex.input);
clen = (*mb_ptr2len)(rex.input);
}
else
{
curc = *rex.input;
clen = 1;
}
if (curc == NUL)
{
clen = 0;
go_to_nextline = FALSE;
}
// swap lists
thislist = &list[flag];
nextlist = &list[flag ^= 1];
nextlist->n = 0; // clear nextlist
nextlist->has_pim = FALSE;
++rex.nfa_listid;
if (prog->re_engine == AUTOMATIC_ENGINE
&& (rex.nfa_listid >= NFA_MAX_STATES
# ifdef FEAT_EVAL
|| nfa_fail_for_testing
# endif
))
{
// too many states, retry with old engine
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
thislist->id = rex.nfa_listid;
nextlist->id = rex.nfa_listid + 1;
#ifdef ENABLE_LOG
fprintf(log_fd, "------------------------------------------\n");
fprintf(log_fd, ">>> Reginput is \"%s\"\n", rex.input);
fprintf(log_fd, ">>> Advanced one character... Current char is %c (code %d) \n", curc, (int)curc);
fprintf(log_fd, ">>> Thislist has %d states available: ", thislist->n);
{
int i;
for (i = 0; i < thislist->n; i++)
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
}
fprintf(log_fd, "\n");
#endif
#ifdef NFA_REGEXP_DEBUG_LOG
fprintf(debug, "\n-------------------\n");
#endif
/*
* If the state lists are empty we can stop.
*/
if (thislist->n == 0)
break;
// compute nextlist
for (listidx = 0; listidx < thislist->n; ++listidx)
{
// If the list gets very long there probably is something wrong.
// At least allow interrupting with CTRL-C.
fast_breakcheck();
if (got_int)
break;
#ifdef FEAT_RELTIME
if (nfa_did_time_out())
break;
#endif
t = &thislist->t[listidx];
#ifdef NFA_REGEXP_DEBUG_LOG
nfa_set_code(t->state->c);
fprintf(debug, "%s, ", code);
#endif
#ifdef ENABLE_LOG
{
int col;
if (t->subs.norm.in_use <= 0)
col = -1;
else if (REG_MULTI)
col = t->subs.norm.list.multi[0].start_col;
else
col = (int)(t->subs.norm.list.line[0].start - rex.line);
nfa_set_code(t->state->c);
fprintf(log_fd, "(%d) char %d %s (start col %d)%s... \n",
abs(t->state->id), (int)t->state->c, code, col,
pim_info(&t->pim));
}
#endif
/*
* Handle the possible codes of the current state.
* The most important is NFA_MATCH.
*/
add_state = NULL;
add_here = FALSE;
add_count = 0;
switch (t->state->c)
{
case NFA_MATCH:
{
// If the match is not at the start of the line, ends before a
// composing characters and rex.reg_icombine is not set, that
// is not really a match.
if (enc_utf8 && !rex.reg_icombine
&& rex.input != rex.line && utf_iscomposing(curc))
break;
nfa_match = TRUE;
copy_sub(&submatch->norm, &t->subs.norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub(&submatch->synt, &t->subs.synt);
#endif
#ifdef ENABLE_LOG
log_subsexpr(&t->subs);
#endif
// Found the left-most longest match, do not look at any other
// states at this position. When the list of states is going
// to be empty quit without advancing, so that "rex.input" is
// correct.
if (nextlist->n == 0)
clen = 0;
goto nextchar;
}
case NFA_END_INVISIBLE:
case NFA_END_INVISIBLE_NEG:
case NFA_END_PATTERN:
/*
* This is only encountered after a NFA_START_INVISIBLE or
* NFA_START_INVISIBLE_BEFORE node.
* They surround a zero-width group, used with "\@=", "\&",
* "\@!", "\@<=" and "\@<!".
* If we got here, it means that the current "invisible" group
* finished successfully, so return control to the parent
* nfa_regmatch(). For a look-behind match only when it ends
* in the position in "nfa_endp".
* Submatches are stored in *m, and used in the parent call.
*/
#ifdef ENABLE_LOG
if (nfa_endp != NULL)
{
if (REG_MULTI)
fprintf(log_fd, "Current lnum: %d, endp lnum: %d; current col: %d, endp col: %d\n",
(int)rex.lnum,
(int)nfa_endp->se_u.pos.lnum,
(int)(rex.input - rex.line),
nfa_endp->se_u.pos.col);
else
fprintf(log_fd, "Current col: %d, endp col: %d\n",
(int)(rex.input - rex.line),
(int)(nfa_endp->se_u.ptr - rex.input));
}
#endif
// If "nfa_endp" is set it's only a match if it ends at
// "nfa_endp"
if (nfa_endp != NULL && (REG_MULTI
? (rex.lnum != nfa_endp->se_u.pos.lnum
|| (int)(rex.input - rex.line)
!= nfa_endp->se_u.pos.col)
: rex.input != nfa_endp->se_u.ptr))
break;
// do not set submatches for \@!
if (t->state->c != NFA_END_INVISIBLE_NEG)
{
copy_sub(&m->norm, &t->subs.norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub(&m->synt, &t->subs.synt);
#endif
}
#ifdef ENABLE_LOG
fprintf(log_fd, "Match found:\n");
log_subsexpr(m);
#endif
nfa_match = TRUE;
// See comment above at "goto nextchar".
if (nextlist->n == 0)
clen = 0;
goto nextchar;
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_FIRST:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_NEG_FIRST:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_FIRST:
case NFA_START_INVISIBLE_BEFORE_NEG:
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
{
#ifdef ENABLE_LOG
fprintf(log_fd, "Failure chance invisible: %d, what follows: %d\n",
failure_chance(t->state->out, 0),
failure_chance(t->state->out1->out, 0));
#endif
// Do it directly if there already is a PIM or when
// nfa_postprocess() detected it will work better.
if (t->pim.result != NFA_PIM_UNUSED
|| t->state->c == NFA_START_INVISIBLE_FIRST
|| t->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| t->state->c == NFA_START_INVISIBLE_BEFORE_FIRST
|| t->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)
{
int in_use = m->norm.in_use;
// Copy submatch info for the recursive call, opposite
// of what happens on success below.
copy_sub_off(&m->norm, &t->subs.norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub_off(&m->synt, &t->subs.synt);
#endif
/*
* First try matching the invisible match, then what
* follows.
*/
result = recursive_regmatch(t->state, NULL, prog,
submatch, m, &listids, &listids_len);
if (result == NFA_TOO_EXPENSIVE)
{
nfa_match = result;
goto theend;
}
// for \@! and \@<! it is a match when the result is
// FALSE
if (result != (t->state->c == NFA_START_INVISIBLE_NEG
|| t->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| t->state->c
== NFA_START_INVISIBLE_BEFORE_NEG
|| t->state->c
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST))
{
// Copy submatch info from the recursive call
copy_sub_off(&t->subs.norm, &m->norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub_off(&t->subs.synt, &m->synt);
#endif
// If the pattern has \ze and it matched in the
// sub pattern, use it.
copy_ze_off(&t->subs.norm, &m->norm);
// t->state->out1 is the corresponding
// END_INVISIBLE node; Add its out to the current
// list (zero-width match).
add_here = TRUE;
add_state = t->state->out1->out;
}
m->norm.in_use = in_use;
}
else
{
nfa_pim_T pim;
/*
* First try matching what follows. Only if a match
* is found verify the invisible match matches. Add a
* nfa_pim_T to the following states, it contains info
* about the invisible match.
*/
pim.state = t->state;
pim.result = NFA_PIM_TODO;
pim.subs.norm.in_use = 0;
#ifdef FEAT_SYN_HL
pim.subs.synt.in_use = 0;
#endif
if (REG_MULTI)
{
pim.end.pos.col = (int)(rex.input - rex.line);
pim.end.pos.lnum = rex.lnum;
}
else
pim.end.ptr = rex.input;
// t->state->out1 is the corresponding END_INVISIBLE
// node; Add its out to the current list (zero-width
// match).
if (addstate_here(thislist, t->state->out1->out,
&t->subs, &pim, &listidx) == NULL)
{
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
}
break;
case NFA_START_PATTERN:
{
nfa_state_T *skip = NULL;
#ifdef ENABLE_LOG
int skip_lid = 0;
#endif
// There is no point in trying to match the pattern if the
// output state is not going to be added to the list.
if (state_in_list(nextlist, t->state->out1->out, &t->subs))
{
skip = t->state->out1->out;
#ifdef ENABLE_LOG
skip_lid = nextlist->id;
#endif
}
else if (state_in_list(nextlist,
t->state->out1->out->out, &t->subs))
{
skip = t->state->out1->out->out;
#ifdef ENABLE_LOG
skip_lid = nextlist->id;
#endif
}
else if (state_in_list(thislist,
t->state->out1->out->out, &t->subs))
{
skip = t->state->out1->out->out;
#ifdef ENABLE_LOG
skip_lid = thislist->id;
#endif
}
if (skip != NULL)
{
#ifdef ENABLE_LOG
nfa_set_code(skip->c);
fprintf(log_fd, "> Not trying to match pattern, output state %d is already in list %d. char %d: %s\n",
abs(skip->id), skip_lid, skip->c, code);
#endif
break;
}
// Copy submatch info to the recursive call, opposite of what
// happens afterwards.
copy_sub_off(&m->norm, &t->subs.norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub_off(&m->synt, &t->subs.synt);
#endif
// First try matching the pattern.
result = recursive_regmatch(t->state, NULL, prog,
submatch, m, &listids, &listids_len);
if (result == NFA_TOO_EXPENSIVE)
{
nfa_match = result;
goto theend;
}
if (result)
{
int bytelen;
#ifdef ENABLE_LOG
fprintf(log_fd, "NFA_START_PATTERN matches:\n");
log_subsexpr(m);
#endif
// Copy submatch info from the recursive call
copy_sub_off(&t->subs.norm, &m->norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub_off(&t->subs.synt, &m->synt);
#endif
// Now we need to skip over the matched text and then
// continue with what follows.
if (REG_MULTI)
// TODO: multi-line match
bytelen = m->norm.list.multi[0].end_col
- (int)(rex.input - rex.line);
else
bytelen = (int)(m->norm.list.line[0].end - rex.input);
#ifdef ENABLE_LOG
fprintf(log_fd, "NFA_START_PATTERN length: %d\n", bytelen);
#endif
if (bytelen == 0)
{
// empty match, output of corresponding
// NFA_END_PATTERN/NFA_SKIP to be used at current
// position
add_here = TRUE;
add_state = t->state->out1->out->out;
}
else if (bytelen <= clen)
{
// match current character, output of corresponding
// NFA_END_PATTERN to be used at next position.
add_state = t->state->out1->out->out;
add_off = clen;
}
else
{
// skip over the matched characters, set character
// count in NFA_SKIP
add_state = t->state->out1->out;
add_off = bytelen;
add_count = bytelen - clen;
}
}
break;
}
case NFA_BOL:
if (rex.input == rex.line)
{
add_here = TRUE;
add_state = t->state->out;
}
break;
case NFA_EOL:
if (curc == NUL)
{
add_here = TRUE;
add_state = t->state->out;
}
break;
case NFA_BOW:
result = TRUE;
if (curc == NUL)
result = FALSE;
else if (has_mbyte)
{
int this_class;
// Get class of current and previous char (if it exists).
this_class = mb_get_class_buf(rex.input, rex.reg_buf);
if (this_class <= 1)
result = FALSE;
else if (reg_prev_class() == this_class)
result = FALSE;
}
else if (!vim_iswordc_buf(curc, rex.reg_buf)
|| (rex.input > rex.line
&& vim_iswordc_buf(rex.input[-1], rex.reg_buf)))
result = FALSE;
if (result)
{
add_here = TRUE;
add_state = t->state->out;
}
break;
case NFA_EOW:
result = TRUE;
if (rex.input == rex.line)
result = FALSE;
else if (has_mbyte)
{
int this_class, prev_class;
// Get class of current and previous char (if it exists).
this_class = mb_get_class_buf(rex.input, rex.reg_buf);
prev_class = reg_prev_class();
if (this_class == prev_class
|| prev_class == 0 || prev_class == 1)
result = FALSE;
}
else if (!vim_iswordc_buf(rex.input[-1], rex.reg_buf)
|| (rex.input[0] != NUL
&& vim_iswordc_buf(curc, rex.reg_buf)))
result = FALSE;
if (result)
{
add_here = TRUE;
add_state = t->state->out;
}
break;
case NFA_BOF:
if (rex.lnum == 0 && rex.input == rex.line
&& (!REG_MULTI || rex.reg_firstlnum == 1))
{
add_here = TRUE;
add_state = t->state->out;
}
break;
case NFA_EOF:
if (rex.lnum == rex.reg_maxline && curc == NUL)
{
add_here = TRUE;
add_state = t->state->out;
}
break;
case NFA_COMPOSING:
{
int mc = curc;
int len = 0;
nfa_state_T *end;
nfa_state_T *sta;
int cchars[MAX_MCO];
int ccount = 0;
int j;
sta = t->state->out;
len = 0;
if (utf_iscomposing(sta->c))
{
// Only match composing character(s), ignore base
// character. Used for ".{composing}" and "{composing}"
// (no preceding character).
len += mb_char2len(mc);
}
if (rex.reg_icombine && len == 0)
{
// If \Z was present, then ignore composing characters.
// When ignoring the base character this always matches.
if (sta->c != curc)
result = FAIL;
else
result = OK;
while (sta->c != NFA_END_COMPOSING)
sta = sta->out;
}
// Check base character matches first, unless ignored.
else if (len > 0 || mc == sta->c)
{
if (len == 0)
{
len += mb_char2len(mc);
sta = sta->out;
}
// We don't care about the order of composing characters.
// Get them into cchars[] first.
while (len < clen)
{
mc = mb_ptr2char(rex.input + len);
cchars[ccount++] = mc;
len += mb_char2len(mc);
if (ccount == MAX_MCO)
break;
}
// Check that each composing char in the pattern matches a
// composing char in the text. We do not check if all
// composing chars are matched.
result = OK;
while (sta->c != NFA_END_COMPOSING)
{
for (j = 0; j < ccount; ++j)
if (cchars[j] == sta->c)
break;
if (j == ccount)
{
result = FAIL;
break;
}
sta = sta->out;
}
}
else
result = FAIL;
end = t->state->out1; // NFA_END_COMPOSING
ADD_STATE_IF_MATCH(end);
break;
}
case NFA_NEWL:
if (curc == NUL && !rex.reg_line_lbr && REG_MULTI
&& rex.lnum <= rex.reg_maxline)
{
go_to_nextline = TRUE;
// Pass -1 for the offset, which means taking the position
// at the start of the next line.
add_state = t->state->out;
add_off = -1;
}
else if (curc == '\n' && rex.reg_line_lbr)
{
// match \n as if it is an ordinary character
add_state = t->state->out;
add_off = 1;
}
break;
case NFA_START_COLL:
case NFA_START_NEG_COLL:
{
// What follows is a list of characters, until NFA_END_COLL.
// One of them must match or none of them must match.
nfa_state_T *state;
int result_if_matched;
int c1, c2;
// Never match EOL. If it's part of the collection it is added
// as a separate state with an OR.
if (curc == NUL)
break;
state = t->state->out;
result_if_matched = (t->state->c == NFA_START_COLL);
for (;;)
{
if (state->c == NFA_COMPOSING)
{
int mc = curc;
int len = 0;
nfa_state_T *end;
nfa_state_T *sta;
int cchars[MAX_MCO];
int ccount = 0;
int j;
sta = t->state->out->out;
len = 0;
if (utf_iscomposing(sta->c))
{
// Only match composing character(s), ignore base
// character. Used for ".{composing}" and "{composing}"
// (no preceding character).
len += mb_char2len(mc);
}
if (rex.reg_icombine && len == 0)
{
// If \Z was present, then ignore composing characters.
// When ignoring the base character this always matches.
if (sta->c != curc)
result = FAIL;
else
result = OK;
while (sta->c != NFA_END_COMPOSING)
sta = sta->out;
}
// Check base character matches first, unless ignored.
else if (len > 0 || mc == sta->c)
// if (len > 0 || mc == sta->c)
{
if (len == 0)
{
len += mb_char2len(mc);
sta = sta->out;
}
// We don't care about the order of composing characters.
// Get them into cchars[] first.
while (len < clen)
{
mc = mb_ptr2char(rex.input + len);
cchars[ccount++] = mc;
len += mb_char2len(mc);
if (ccount == MAX_MCO)
break;
}
// Check that each composing char in the pattern matches a
// composing char in the text. We do not check if all
// composing chars are matched.
result = OK;
while (sta->c != NFA_END_COMPOSING)
{
for (j = 0; j < ccount; ++j)
if (cchars[j] == sta->c)
break;
if (j == ccount)
{
result = FAIL;
break;
}
sta = sta->out;
}
}
else
result = FAIL;
if (t->state->out->out1 != NULL
&& t->state->out->out1->c == NFA_END_COMPOSING)
{
end = t->state->out->out1;
ADD_STATE_IF_MATCH(end);
}
break;
}
if (state->c == NFA_END_COLL)
{
result = !result_if_matched;
break;
}
if (state->c == NFA_RANGE_MIN)
{
c1 = state->val;
state = state->out; // advance to NFA_RANGE_MAX
c2 = state->val;
#ifdef ENABLE_LOG
fprintf(log_fd, "NFA_RANGE_MIN curc=%d c1=%d c2=%d\n",
curc, c1, c2);
#endif
if (curc >= c1 && curc <= c2)
{
result = result_if_matched;
break;
}
if (rex.reg_ic)
{
int curc_low = MB_CASEFOLD(curc);
int done = FALSE;
for ( ; c1 <= c2; ++c1)
if (MB_CASEFOLD(c1) == curc_low)
{
result = result_if_matched;
done = TRUE;
break;
}
if (done)
break;
}
}
else if (state->c < 0 ? check_char_class(state->c, curc)
: (curc == state->c
|| (rex.reg_ic && MB_CASEFOLD(curc)
== MB_CASEFOLD(state->c))))
{
result = result_if_matched;
break;
}
state = state->out;
}
if (result)
{
// next state is in out of the NFA_END_COLL, out1 of
// START points to the END state
add_state = t->state->out1->out;
add_off = clen;
}
break;
}
case NFA_ANY:
// Any char except '\0', (end of input) does not match.
if (curc > 0)
{
add_state = t->state->out;
add_off = clen;
}
break;
case NFA_ANY_COMPOSING:
// On a composing character skip over it. Otherwise do
// nothing. Always matches.
if (enc_utf8 && utf_iscomposing(curc))
{
add_off = clen;
}
else
{
add_here = TRUE;
add_off = 0;
}
add_state = t->state->out;
break;
/*
* Character classes like \a for alpha, \d for digit etc.
*/
case NFA_IDENT: // \i
result = vim_isIDc(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SIDENT: // \I
result = !VIM_ISDIGIT(curc) && vim_isIDc(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_KWORD: // \k
result = vim_iswordp_buf(rex.input, rex.reg_buf);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SKWORD: // \K
result = !VIM_ISDIGIT(curc)
&& vim_iswordp_buf(rex.input, rex.reg_buf);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_FNAME: // \f
result = vim_isfilec(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SFNAME: // \F
result = !VIM_ISDIGIT(curc) && vim_isfilec(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_PRINT: // \p
result = vim_isprintc(PTR2CHAR(rex.input));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SPRINT: // \P
result = !VIM_ISDIGIT(curc) && vim_isprintc(PTR2CHAR(rex.input));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_WHITE: // \s
result = VIM_ISWHITE(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NWHITE: // \S
result = curc != NUL && !VIM_ISWHITE(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_DIGIT: // \d
result = ri_digit(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NDIGIT: // \D
result = curc != NUL && !ri_digit(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_HEX: // \x
result = ri_hex(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NHEX: // \X
result = curc != NUL && !ri_hex(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_OCTAL: // \o
result = ri_octal(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NOCTAL: // \O
result = curc != NUL && !ri_octal(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_WORD: // \w
result = ri_word(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NWORD: // \W
result = curc != NUL && !ri_word(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_HEAD: // \h
result = ri_head(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NHEAD: // \H
result = curc != NUL && !ri_head(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_ALPHA: // \a
result = ri_alpha(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NALPHA: // \A
result = curc != NUL && !ri_alpha(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_LOWER: // \l
result = ri_lower(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NLOWER: // \L
result = curc != NUL && !ri_lower(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_UPPER: // \u
result = ri_upper(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NUPPER: // \U
result = curc != NUL && !ri_upper(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_LOWER_IC: // [a-z]
result = ri_lower(curc) || (rex.reg_ic && ri_upper(curc));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NLOWER_IC: // [^a-z]
result = curc != NUL
&& !(ri_lower(curc) || (rex.reg_ic && ri_upper(curc)));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_UPPER_IC: // [A-Z]
result = ri_upper(curc) || (rex.reg_ic && ri_lower(curc));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NUPPER_IC: // ^[A-Z]
result = curc != NUL
&& !(ri_upper(curc) || (rex.reg_ic && ri_lower(curc)));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
#ifdef FEAT_SYN_HL
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
#endif
// \1 .. \9 \z1 .. \z9
{
int subidx;
int bytelen;
#ifdef FEAT_SYN_HL
if (t->state->c >= NFA_BACKREF1 && t->state->c <= NFA_BACKREF9)
#endif
{
subidx = t->state->c - NFA_BACKREF1 + 1;
result = match_backref(&t->subs.norm, subidx, &bytelen);
}
#ifdef FEAT_SYN_HL
else
{
subidx = t->state->c - NFA_ZREF1 + 1;
result = match_zref(subidx, &bytelen);
}
#endif
if (result)
{
if (bytelen == 0)
{
// empty match always works, output of NFA_SKIP to be
// used next
add_here = TRUE;
add_state = t->state->out->out;
}
else if (bytelen <= clen)
{
// match current character, jump ahead to out of
// NFA_SKIP
add_state = t->state->out->out;
add_off = clen;
}
else
{
// skip over the matched characters, set character
// count in NFA_SKIP
add_state = t->state->out;
add_off = bytelen;
add_count = bytelen - clen;
}
}
break;
}
case NFA_SKIP:
// character of previous matching \1 .. \9 or \@>
if (t->count - clen <= 0)
{
// end of match, go to what follows
add_state = t->state->out;
add_off = clen;
}
else
{
// add state again with decremented count
add_state = t->state;
add_off = 0;
add_count = t->count - clen;
}
break;
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
result = (REG_MULTI &&
nfa_re_num_cmp(t->state->val, t->state->c - NFA_LNUM,
(long_u)(rex.lnum + rex.reg_firstlnum)));
if (result)
{
add_here = TRUE;
add_state = t->state->out;
}
break;
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
result = nfa_re_num_cmp(t->state->val, t->state->c - NFA_COL,
(long_u)(rex.input - rex.line) + 1);
if (result)
{
add_here = TRUE;
add_state = t->state->out;
}
break;
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
{
int op = t->state->c - NFA_VCOL;
colnr_T col = (colnr_T)(rex.input - rex.line);
win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win;
// Bail out quickly when there can't be a match, avoid the
// overhead of win_linetabsize() on long lines.
if (op != 1 && col > t->state->val
* (has_mbyte ? MB_MAXBYTES : 1))
break;
result = FALSE;
if (op == 1 && col - 1 > t->state->val && col > 100)
{
int ts = wp->w_buffer->b_p_ts;
// Guess that a character won't use more columns than
// 'tabstop', with a minimum of 4.
if (ts < 4)
ts = 4;
result = col > t->state->val * ts;
}
if (!result)
{
linenr_T lnum = REG_MULTI
? rex.reg_firstlnum + rex.lnum : 1;
long_u vcol;
if (REG_MULTI && (lnum <= 0
|| lnum > wp->w_buffer->b_ml.ml_line_count))
lnum = 1;
vcol = (long_u)win_linetabsize(wp, lnum, rex.line, col);
result = nfa_re_num_cmp(t->state->val, op, vcol + 1);
}
if (result)
{
add_here = TRUE;
add_state = t->state->out;
}
}
break;
case NFA_MARK:
case NFA_MARK_GT:
case NFA_MARK_LT:
{
pos_T *pos;
size_t col = REG_MULTI ? rex.input - rex.line : 0;
pos = getmark_buf(rex.reg_buf, t->state->val, FALSE);
// Line may have been freed, get it again.
if (REG_MULTI)
{
rex.line = reg_getline(rex.lnum);
rex.input = rex.line + col;
}
// Compare the mark position to the match position, if the mark
// exists and mark is set in reg_buf.
if (pos != NULL && pos->lnum > 0)
{
colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum
&& pos->col == MAXCOL
? reg_getline_len(pos->lnum - rex.reg_firstlnum)
: pos->col;
result = (pos->lnum == rex.lnum + rex.reg_firstlnum
? (pos_col == (colnr_T)(rex.input - rex.line)
? t->state->c == NFA_MARK
: (pos_col < (colnr_T)(rex.input - rex.line)
? t->state->c == NFA_MARK_GT
: t->state->c == NFA_MARK_LT))
: (pos->lnum < rex.lnum + rex.reg_firstlnum
? t->state->c == NFA_MARK_GT
: t->state->c == NFA_MARK_LT));
if (result)
{
add_here = TRUE;
add_state = t->state->out;
}
}
break;
}
case NFA_CURSOR:
result = (rex.reg_win != NULL
&& (rex.lnum + rex.reg_firstlnum
== rex.reg_win->w_cursor.lnum)
&& ((colnr_T)(rex.input - rex.line)
== rex.reg_win->w_cursor.col));
if (result)
{
add_here = TRUE;
add_state = t->state->out;
}
break;
case NFA_VISUAL:
result = reg_match_visual();
if (result)
{
add_here = TRUE;
add_state = t->state->out;
}
break;
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
#ifdef FEAT_SYN_HL
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
#endif
case NFA_NOPEN:
case NFA_ZSTART:
// These states are only added to be able to bail out when
// they are added again, nothing is to be done.
break;
default: // regular character
{
int c = t->state->c;
#ifdef DEBUG
if (c < 0)
siemsg("Negative state char: %ld", (long)c);
#endif
result = (c == curc);
if (!result && rex.reg_ic)
result = MB_CASEFOLD(c) == MB_CASEFOLD(curc);
// If rex.reg_icombine is not set only skip over the character
// itself. When it is set skip over composing characters.
if (result && enc_utf8 && !rex.reg_icombine)
clen = utf_ptr2len(rex.input);
ADD_STATE_IF_MATCH(t->state);
break;
}
} // switch (t->state->c)
if (add_state != NULL)
{
nfa_pim_T *pim;
nfa_pim_T pim_copy;
if (t->pim.result == NFA_PIM_UNUSED)
pim = NULL;
else
pim = &t->pim;
// Handle the postponed invisible match if the match might end
// without advancing and before the end of the line.
if (pim != NULL && (clen == 0 || match_follows(add_state, 0)))
{
if (pim->result == NFA_PIM_TODO)
{
#ifdef ENABLE_LOG
fprintf(log_fd, "\n");
fprintf(log_fd, "==================================\n");
fprintf(log_fd, "Postponed recursive nfa_regmatch()\n");
fprintf(log_fd, "\n");
#endif
result = recursive_regmatch(pim->state, pim,
prog, submatch, m, &listids, &listids_len);
pim->result = result ? NFA_PIM_MATCH : NFA_PIM_NOMATCH;
// for \@! and \@<! it is a match when the result is
// FALSE
if (result != (pim->state->c == NFA_START_INVISIBLE_NEG
|| pim->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST))
{
// Copy submatch info from the recursive call
copy_sub_off(&pim->subs.norm, &m->norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub_off(&pim->subs.synt, &m->synt);
#endif
}
}
else
{
result = (pim->result == NFA_PIM_MATCH);
#ifdef ENABLE_LOG
fprintf(log_fd, "\n");
fprintf(log_fd, "Using previous recursive nfa_regmatch() result, result == %d\n", pim->result);
fprintf(log_fd, "MATCH = %s\n", result == TRUE ? "OK" : "FALSE");
fprintf(log_fd, "\n");
#endif
}
// for \@! and \@<! it is a match when result is FALSE
if (result != (pim->state->c == NFA_START_INVISIBLE_NEG
|| pim->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST))
{
// Copy submatch info from the recursive call
copy_sub_off(&t->subs.norm, &pim->subs.norm);
#ifdef FEAT_SYN_HL
if (rex.nfa_has_zsubexpr)
copy_sub_off(&t->subs.synt, &pim->subs.synt);
#endif
}
else
// look-behind match failed, don't add the state
continue;
// Postponed invisible match was handled, don't add it to
// following states.
pim = NULL;
}
// If "pim" points into l->t it will become invalid when
// adding the state causes the list to be reallocated. Make a
// local copy to avoid that.
if (pim == &t->pim)
{
copy_pim(&pim_copy, pim);
pim = &pim_copy;
}
if (add_here)
r = addstate_here(thislist, add_state, &t->subs,
pim, &listidx);
else
{
r = addstate(nextlist, add_state, &t->subs, pim, add_off);
if (add_count > 0)
nextlist->t[nextlist->n - 1].count = add_count;
}
if (r == NULL)
{
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
} // for (thislist = thislist; thislist->state; thislist++)
// Look for the start of a match in the current position by adding the
// start state to the list of states.
// The first found match is the leftmost one, thus the order of states
// matters!
// Do not add the start state in recursive calls of nfa_regmatch(),
// because recursive calls should only start in the first position.
// Unless "nfa_endp" is not NULL, then we match the end position.
// Also don't start a match past the first line.
if (nfa_match == FALSE
&& ((toplevel
&& rex.lnum == 0
&& clen != 0
&& (rex.reg_maxcol == 0
|| (colnr_T)(rex.input - rex.line) < rex.reg_maxcol))
|| (nfa_endp != NULL
&& (REG_MULTI
? (rex.lnum < nfa_endp->se_u.pos.lnum
|| (rex.lnum == nfa_endp->se_u.pos.lnum
&& (int)(rex.input - rex.line)
< nfa_endp->se_u.pos.col))
: rex.input < nfa_endp->se_u.ptr))))
{
#ifdef ENABLE_LOG
fprintf(log_fd, "(---) STARTSTATE\n");
#endif
// Inline optimized code for addstate() if we know the state is
// the first MOPEN.
if (toplevel)
{
int add = TRUE;
int c;
if (prog->regstart != NUL && clen != 0)
{
if (nextlist->n == 0)
{
colnr_T col = (colnr_T)(rex.input - rex.line) + clen;
// Nextlist is empty, we can skip ahead to the
// character that must appear at the start.
if (skip_to_start(prog->regstart, &col) == FAIL)
break;
#ifdef ENABLE_LOG
fprintf(log_fd, " Skipping ahead %d bytes to regstart\n",
col - ((colnr_T)(rex.input - rex.line) + clen));
#endif
rex.input = rex.line + col - clen;
}
else
{
// Checking if the required start character matches is
// cheaper than adding a state that won't match.
c = PTR2CHAR(rex.input + clen);
if (c != prog->regstart && (!rex.reg_ic
|| MB_CASEFOLD(c) != MB_CASEFOLD(prog->regstart)))
{
#ifdef ENABLE_LOG
fprintf(log_fd, " Skipping start state, regstart does not match\n");
#endif
add = FALSE;
}
}
}
if (add)
{
if (REG_MULTI)
{
m->norm.list.multi[0].start_col =
(colnr_T)(rex.input - rex.line) + clen;
m->norm.orig_start_col =
m->norm.list.multi[0].start_col;
}
else
m->norm.list.line[0].start = rex.input + clen;
if (addstate(nextlist, start->out, m, NULL, clen) == NULL)
{
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
}
else
{
if (addstate(nextlist, start, m, NULL, clen) == NULL)
{
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
}
#ifdef ENABLE_LOG
fprintf(log_fd, ">>> Thislist had %d states available: ", thislist->n);
{
int i;
for (i = 0; i < thislist->n; i++)
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
}
fprintf(log_fd, "\n");
#endif
nextchar:
// Advance to the next character, or advance to the next line, or
// finish.
if (clen != 0)
rex.input += clen;
else if (go_to_nextline || (nfa_endp != NULL && REG_MULTI
&& rex.lnum < nfa_endp->se_u.pos.lnum))
reg_nextline();
else
break;
// Allow interrupting with CTRL-C.
line_breakcheck();
if (got_int)
break;
#ifdef FEAT_RELTIME
if (nfa_did_time_out())
break;
#endif
}
#ifdef ENABLE_LOG
if (log_fd != stderr)
fclose(log_fd);
log_fd = NULL;
#endif
theend:
// Free memory
vim_free(list[0].t);
vim_free(list[1].t);
vim_free(listids);
#undef ADD_STATE_IF_MATCH
#ifdef NFA_REGEXP_DEBUG_LOG
fclose(debug);
#endif
return nfa_match;
}
/*
* Try match of "prog" with at rex.line["col"].
* Returns <= 0 for failure, number of lines contained in the match otherwise.
*/
static long
nfa_regtry(
nfa_regprog_T *prog,
colnr_T col,
int *timed_out UNUSED) // flag set on timeout or NULL
{
int i;
regsubs_T subs, m;
nfa_state_T *start = prog->start;
int result;
#ifdef ENABLE_LOG
FILE *f;
#endif
rex.input = rex.line + col;
#ifdef FEAT_RELTIME
nfa_timed_out = timed_out;
#endif
#ifdef ENABLE_LOG
f = fopen(NFA_REGEXP_RUN_LOG, "a");
if (f != NULL)
{
fprintf(f, "\n\n\t=======================================================\n");
# ifdef DEBUG
fprintf(f, "\tRegexp is \"%s\"\n", nfa_regengine.expr);
# endif
fprintf(f, "\tInput text is \"%s\" \n", rex.input);
fprintf(f, "\t=======================================================\n\n");
nfa_print_state(f, start);
fprintf(f, "\n\n");
fclose(f);
}
else
emsg("Could not open temporary log file for writing");
#endif
clear_sub(&subs.norm);
clear_sub(&m.norm);
#ifdef FEAT_SYN_HL
clear_sub(&subs.synt);
clear_sub(&m.synt);
#endif
result = nfa_regmatch(prog, start, &subs, &m);
if (result == FALSE)
return 0;
else if (result == NFA_TOO_EXPENSIVE)
return result;
cleanup_subexpr();
if (REG_MULTI)
{
for (i = 0; i < subs.norm.in_use; i++)
{
rex.reg_startpos[i].lnum = subs.norm.list.multi[i].start_lnum;
rex.reg_startpos[i].col = subs.norm.list.multi[i].start_col;
rex.reg_endpos[i].lnum = subs.norm.list.multi[i].end_lnum;
rex.reg_endpos[i].col = subs.norm.list.multi[i].end_col;
}
if (rex.reg_mmatch != NULL)
rex.reg_mmatch->rmm_matchcol = subs.norm.orig_start_col;
if (rex.reg_startpos[0].lnum < 0)
{
rex.reg_startpos[0].lnum = 0;
rex.reg_startpos[0].col = col;
}
if (rex.reg_endpos[0].lnum < 0)
{
// pattern has a \ze but it didn't match, use current end
rex.reg_endpos[0].lnum = rex.lnum;
rex.reg_endpos[0].col = (int)(rex.input - rex.line);
}
else
// Use line number of "\ze".
rex.lnum = rex.reg_endpos[0].lnum;
}
else
{
for (i = 0; i < subs.norm.in_use; i++)
{
rex.reg_startp[i] = subs.norm.list.line[i].start;
rex.reg_endp[i] = subs.norm.list.line[i].end;
}
if (rex.reg_startp[0] == NULL)
rex.reg_startp[0] = rex.line + col;
if (rex.reg_endp[0] == NULL)
rex.reg_endp[0] = rex.input;
}
#ifdef FEAT_SYN_HL
// Package any found \z(...\) matches for export. Default is none.
unref_extmatch(re_extmatch_out);
re_extmatch_out = NULL;
if (prog->reghasz == REX_SET)
{
cleanup_zsubexpr();
re_extmatch_out = make_extmatch();
if (re_extmatch_out == NULL)
return 0;
// Loop over \z1, \z2, etc. There is no \z0.
for (i = 1; i < subs.synt.in_use; i++)
{
if (REG_MULTI)
{
struct multipos *mpos = &subs.synt.list.multi[i];
// Only accept single line matches that are valid.
if (mpos->start_lnum >= 0
&& mpos->start_lnum == mpos->end_lnum
&& mpos->end_col >= mpos->start_col)
re_extmatch_out->matches[i] =
vim_strnsave(reg_getline(mpos->start_lnum)
+ mpos->start_col,
mpos->end_col - mpos->start_col);
}
else
{
struct linepos *lpos = &subs.synt.list.line[i];
if (lpos->start != NULL && lpos->end != NULL)
re_extmatch_out->matches[i] =
vim_strnsave(lpos->start, lpos->end - lpos->start);
}
}
}
#endif
return 1 + rex.lnum;
}
/*
* Match a regexp against a string ("line" points to the string) or multiple
* lines (if "line" is NULL, use reg_getline()).
*
* Returns <= 0 for failure, number of lines contained in the match otherwise.
*/
static long
nfa_regexec_both(
char_u *line,
colnr_T startcol, // column to start looking for match
int *timed_out) // flag set on timeout or NULL
{
nfa_regprog_T *prog;
long retval = 0L;
int i;
colnr_T col = startcol;
if (REG_MULTI)
{
prog = (nfa_regprog_T *)rex.reg_mmatch->regprog;
line = reg_getline((linenr_T)0); // relative to the cursor
rex.reg_startpos = rex.reg_mmatch->startpos;
rex.reg_endpos = rex.reg_mmatch->endpos;
}
else
{
prog = (nfa_regprog_T *)rex.reg_match->regprog;
rex.reg_startp = rex.reg_match->startp;
rex.reg_endp = rex.reg_match->endp;
}
// Be paranoid...
if (prog == NULL || line == NULL)
{
iemsg(e_null_argument);
goto theend;
}
// If pattern contains "\c" or "\C": overrule value of rex.reg_ic
if (prog->regflags & RF_ICASE)
rex.reg_ic = TRUE;
else if (prog->regflags & RF_NOICASE)
rex.reg_ic = FALSE;
// If pattern contains "\Z" overrule value of rex.reg_icombine
if (prog->regflags & RF_ICOMBINE)
rex.reg_icombine = TRUE;
rex.line = line;
rex.lnum = 0; // relative to line
rex.nfa_has_zend = prog->has_zend;
rex.nfa_has_backref = prog->has_backref;
rex.nfa_nsubexpr = prog->nsubexp;
rex.nfa_listid = 1;
rex.nfa_alt_listid = 2;
#ifdef DEBUG
nfa_regengine.expr = prog->pattern;
#endif
if (prog->reganch && col > 0)
return 0L;
rex.need_clear_subexpr = TRUE;
#ifdef FEAT_SYN_HL
// Clear the external match subpointers if necessary.
if (prog->reghasz == REX_SET)
{
rex.nfa_has_zsubexpr = TRUE;
rex.need_clear_zsubexpr = TRUE;
}
else
{
rex.nfa_has_zsubexpr = FALSE;
rex.need_clear_zsubexpr = FALSE;
}
#endif
if (prog->regstart != NUL)
{
// Skip ahead until a character we know the match must start with.
// When there is none there is no match.
if (skip_to_start(prog->regstart, &col) == FAIL)
return 0L;
// If match_text is set it contains the full text that must match.
// Nothing else to try. Doesn't handle combining chars well.
if (prog->match_text != NULL && *prog->match_text != NUL && !rex.reg_icombine)
{
retval = find_match_text(&col, prog->regstart, prog->match_text);
if (REG_MULTI)
rex.reg_mmatch->rmm_matchcol = col;
else
rex.reg_match->rm_matchcol = col;
return retval;
}
}
// If the start column is past the maximum column: no need to try.
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol)
goto theend;
// Set the "nstate" used by nfa_regcomp() to zero to trigger an error when
// it's accidentally used during execution.
nstate = 0;
for (i = 0; i < prog->nstate; ++i)
{
prog->state[i].id = i;
prog->state[i].lastlist[0] = 0;
prog->state[i].lastlist[1] = 0;
}
retval = nfa_regtry(prog, col, timed_out);
#ifdef DEBUG
nfa_regengine.expr = NULL;
#endif
theend:
if (retval > 0)
{
// Make sure the end is never before the start. Can happen when \zs and
// \ze are used.
if (REG_MULTI)
{
lpos_T *start = &rex.reg_mmatch->startpos[0];
lpos_T *end = &rex.reg_mmatch->endpos[0];
if (end->lnum < start->lnum
|| (end->lnum == start->lnum && end->col < start->col))
rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0];
}
else
{
if (rex.reg_match->endp[0] < rex.reg_match->startp[0])
rex.reg_match->endp[0] = rex.reg_match->startp[0];
// startpos[0] may be set by "\zs", also return the column where
// the whole pattern matched.
rex.reg_match->rm_matchcol = col;
}
}
return retval;
}
/*
* Compile a regular expression into internal code for the NFA matcher.
* Returns the program in allocated space. Returns NULL for an error.
*/
static regprog_T *
nfa_regcomp(char_u *expr, int re_flags)
{
nfa_regprog_T *prog = NULL;
size_t prog_size;
int *postfix;
if (expr == NULL)
return NULL;
#ifdef DEBUG
nfa_regengine.expr = expr;
#endif
nfa_re_flags = re_flags;
init_class_tab();
if (nfa_regcomp_start(expr, re_flags) == FAIL)
return NULL;
// Build postfix form of the regexp. Needed to build the NFA
// (and count its size).
postfix = re2post();
if (postfix == NULL)
goto fail; // Cascaded (syntax?) error
/*
* In order to build the NFA, we parse the input regexp twice:
* 1. first pass to count size (so we can allocate space)
* 2. second to emit code
*/
#ifdef ENABLE_LOG
{
FILE *f = fopen(NFA_REGEXP_RUN_LOG, "a");
if (f != NULL)
{
fprintf(f, "\n*****************************\n\n\n\n\tCompiling regexp \"%s\"... hold on !\n", expr);
fclose(f);
}
}
#endif
/*
* PASS 1
* Count number of NFA states in "nstate". Do not build the NFA.
*/
post2nfa(postfix, post_ptr, TRUE);
// allocate the regprog with space for the compiled regexp
prog_size = offsetof(nfa_regprog_T, state) + sizeof(nfa_state_T) * nstate;
prog = alloc(prog_size);
if (prog == NULL)
goto fail;
state_ptr = prog->state;
prog->re_in_use = FALSE;
/*
* PASS 2
* Build the NFA
*/
prog->start = post2nfa(postfix, post_ptr, FALSE);
if (prog->start == NULL)
goto fail;
prog->regflags = regflags;
prog->engine = &nfa_regengine;
prog->nstate = nstate;
prog->has_zend = rex.nfa_has_zend;
prog->has_backref = rex.nfa_has_backref;
prog->nsubexp = regnpar;
nfa_postprocess(prog);
prog->reganch = nfa_get_reganch(prog->start, 0);
prog->regstart = nfa_get_regstart(prog->start, 0);
prog->match_text = nfa_get_match_text(prog->start);
#ifdef ENABLE_LOG
nfa_postfix_dump(expr, OK);
nfa_dump(prog);
#endif
#ifdef FEAT_SYN_HL
// Remember whether this pattern has any \z specials in it.
prog->reghasz = re_has_z;
#endif
prog->pattern = vim_strsave(expr);
#ifdef DEBUG
nfa_regengine.expr = NULL;
#endif
out:
VIM_CLEAR(post_start);
post_ptr = post_end = NULL;
state_ptr = NULL;
return (regprog_T *)prog;
fail:
VIM_CLEAR(prog);
#ifdef ENABLE_LOG
nfa_postfix_dump(expr, FAIL);
#endif
#ifdef DEBUG
nfa_regengine.expr = NULL;
#endif
goto out;
}
/*
* Free a compiled regexp program, returned by nfa_regcomp().
*/
static void
nfa_regfree(regprog_T *prog)
{
if (prog == NULL)
return;
vim_free(((nfa_regprog_T *)prog)->match_text);
vim_free(((nfa_regprog_T *)prog)->pattern);
vim_free(prog);
}
/*
* Match a regexp against a string.
* "rmp->regprog" is a compiled regexp as returned by nfa_regcomp().
* Uses curbuf for line count and 'iskeyword'.
* If "line_lbr" is TRUE consider a "\n" in "line" to be a line break.
*
* Returns <= 0 for failure, number of lines contained in the match otherwise.
*/
static int
nfa_regexec_nl(
regmatch_T *rmp,
char_u *line, // string to match against
colnr_T col, // column to start looking for match
int line_lbr)
{
rex.reg_match = rmp;
rex.reg_mmatch = NULL;
rex.reg_maxline = 0;
rex.reg_line_lbr = line_lbr;
rex.reg_buf = curbuf;
rex.reg_win = NULL;
rex.reg_ic = rmp->rm_ic;
rex.reg_icombine = FALSE;
rex.reg_maxcol = 0;
return nfa_regexec_both(line, col, NULL);
}
/*
* Match a regexp against multiple lines.
* "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
* Uses curbuf for line count and 'iskeyword'.
*
* Return <= 0 if there is no match. Return number of lines contained in the
* match otherwise.
*
* Note: the body is the same as bt_regexec() except for nfa_regexec_both()
*
* ! Also NOTE : match may actually be in another line. e.g.:
* when r.e. is \nc, cursor is at 'a' and the text buffer looks like
*
* +-------------------------+
* |a |
* |b |
* |c |
* | |
* +-------------------------+
*
* then nfa_regexec_multi() returns 3. while the original
* vim_regexec_multi() returns 0 and a second call at line 2 will return 2.
*
* FIXME if this behavior is not compatible.
*/
static long
nfa_regexec_multi(
regmmatch_T *rmp,
win_T *win, // window in which to search or NULL
buf_T *buf, // buffer in which to search
linenr_T lnum, // nr of line to start looking for match
colnr_T col, // column to start looking for match
int *timed_out) // flag set on timeout or NULL
{
init_regexec_multi(rmp, win, buf, lnum);
return nfa_regexec_both(NULL, col, timed_out);
}
#ifdef DEBUG
# undef ENABLE_LOG
#endif