vim/src/vim9class.c
Yegappan Lakshmanan 16f2d3a465
patch 9.1.1146: Vim9: wrong context being used when evaluating class member
Problem:  Vim9: wrong context being used when evaluating class member
          (lifepillar, Ernie Rael)
Solution: Use the correct script context when evaluating a class member
          init expression(Yegappan Lakshmanan)

fixes: #14011
fixes: #14402
closes: #15112
closes: #16660

Signed-off-by: Yegappan Lakshmanan <yegappan@yahoo.com>
Signed-off-by: Christian Brabandt <cb@256bit.org>
2025-02-24 19:26:56 +01:00

4152 lines
100 KiB
C

/* vi:set ts=8 sts=4 sw=4 noet:
*
* VIM - Vi IMproved by Bram Moolenaar
*
* Do ":help uganda" in Vim to read copying and usage conditions.
* Do ":help credits" in Vim to see a list of people who contributed.
* See README.txt for an overview of the Vim source code.
*/
/*
* vim9class.c: Vim9 script class support
*/
#define USING_FLOAT_STUFF
#include "vim.h"
#if defined(FEAT_EVAL) || defined(PROTO)
// When not generating protos this is included in proto.h
#ifdef PROTO
# include "vim9.h"
#endif
static class_T *first_class = NULL;
static class_T *next_nonref_class = NULL;
/*
* Call this function when a class has been created. It will be added to the
* list headed by "first_class".
*/
static void
class_created(class_T *cl)
{
if (first_class != NULL)
{
cl->class_next_used = first_class;
first_class->class_prev_used = cl;
}
first_class = cl;
}
/*
* Call this function when a class has been cleared and is about to be freed.
* It is removed from the list headed by "first_class".
*/
static void
class_cleared(class_T *cl)
{
if (cl->class_next_used != NULL)
cl->class_next_used->class_prev_used = cl->class_prev_used;
if (cl->class_prev_used != NULL)
cl->class_prev_used->class_next_used = cl->class_next_used;
else if (first_class == cl)
first_class = cl->class_next_used;
// update the next class to check if needed
if (cl == next_nonref_class)
next_nonref_class = cl->class_next_used;
}
/*
* Parse a member declaration, both object and class member.
* Returns OK or FAIL. When OK then "varname_end" is set to just after the
* variable name and "type_ret" is set to the declared or detected type.
* "init_expr" is set to the initialisation expression (allocated), if there is
* one. For an interface "init_expr" is NULL.
*/
static int
parse_member(
exarg_T *eap,
char_u *line,
char_u *varname,
int has_public, // TRUE if "public" seen before "varname"
char_u **varname_end,
int *has_type,
garray_T *type_list,
type_T **type_ret,
char_u **init_expr)
{
*varname_end = to_name_end(varname, FALSE);
if (*varname == '_' && has_public)
{
semsg(_(e_public_variable_name_cannot_start_with_underscore_str), line);
return FAIL;
}
char_u *colon = skipwhite(*varname_end);
char_u *type_arg = colon;
type_T *type = NULL;
*has_type = FALSE;
if (*colon == ':')
{
if (VIM_ISWHITE(**varname_end))
{
semsg(_(e_no_white_space_allowed_before_colon_str), varname);
return FAIL;
}
if (!VIM_ISWHITE(colon[1]))
{
semsg(_(e_white_space_required_after_str_str), ":", varname);
return FAIL;
}
type_arg = skipwhite(colon + 1);
type = parse_type(&type_arg, type_list, TRUE);
if (type == NULL)
return FAIL;
*has_type = TRUE;
}
char_u *init_arg = skipwhite(type_arg);
if (type == NULL && *init_arg != '=')
{
emsg(_(e_type_or_initialization_required));
return FAIL;
}
if (init_expr == NULL && *init_arg == '=')
{
emsg(_(e_cannot_initialize_variable_in_interface));
return FAIL;
}
if (*init_arg == '=')
{
evalarg_T evalarg;
char_u *expr_start, *expr_end;
if (!VIM_ISWHITE(init_arg[-1]) || !VIM_ISWHITE(init_arg[1]))
{
semsg(_(e_white_space_required_before_and_after_str_at_str),
"=", type_arg);
return FAIL;
}
init_arg = skipwhite(init_arg + 1);
fill_evalarg_from_eap(&evalarg, eap, FALSE);
(void)skip_expr_concatenate(&init_arg, &expr_start, &expr_end, &evalarg);
init_arg = skipwhite(init_arg);
if (*init_arg != NUL && !vim9_comment_start(init_arg))
{
semsg(_(e_trailing_characters_str), init_arg);
return FAIL;
}
// No type specified for the member. Set it to "any" and the correct
// type will be set when the object is instantiated.
if (type == NULL)
type = &t_any;
*init_expr = vim_strnsave(expr_start, expr_end - expr_start);
// Free the memory pointed by expr_start.
clear_evalarg(&evalarg, NULL);
}
else if (!valid_declaration_type(type))
return FAIL;
*type_ret = type;
return OK;
}
typedef struct oc_newmember_S oc_newmember_T;
struct oc_newmember_S
{
garray_T *gap;
char_u *varname;
char_u *varname_end;
int has_public;
int has_final;
int has_type;
type_T *type;
char_u *init_expr;
};
/*
* Add a member to an object or a class.
* Returns OK when successful, "init_expr" will be consumed then.
* Returns OK on success and FAIL on memory allocation failure (caller might
* need to free "init_expr").
*/
static int
add_member(
garray_T *gap,
char_u *varname,
char_u *varname_end,
int has_public,
int has_final,
int has_const,
int has_type,
type_T *type,
char_u *init_expr)
{
if (ga_grow(gap, 1) == FAIL)
return FAIL;
ocmember_T *m = ((ocmember_T *)gap->ga_data) + gap->ga_len;
m->ocm_name = vim_strnsave(varname, varname_end - varname);
m->ocm_access = has_public ? VIM_ACCESS_ALL
: *varname == '_' ? VIM_ACCESS_PRIVATE : VIM_ACCESS_READ;
if (has_final)
m->ocm_flags |= OCMFLAG_FINAL;
if (has_const)
m->ocm_flags |= OCMFLAG_CONST;
if (has_type)
m->ocm_flags |= OCMFLAG_HAS_TYPE;
m->ocm_type = type;
if (init_expr != NULL)
{
m->ocm_init = init_expr;
// Save the script context, we need it when evaluating or compiling the
// initializer expression.
m->ocm_init_sctx = current_sctx;
m->ocm_init_sctx.sc_lnum += SOURCING_LNUM;
}
++gap->ga_len;
return OK;
}
/*
* Move the class or object members found while parsing a class into the class.
* "gap" contains the found members.
* "parent_members" points to the members in the parent class (if any)
* "parent_count" is the number of members in the parent class
* "members" will be set to the newly allocated array of members and
* "member_count" set to the number of members.
* Returns OK on success and FAIL on memory allocation failure.
*/
static int
add_members_to_class(
garray_T *gap,
ocmember_T *parent_members,
int parent_count,
ocmember_T **members,
int *member_count)
{
*member_count = parent_count + gap->ga_len;
*members = *member_count == 0 ? NULL
: ALLOC_MULT(ocmember_T, *member_count);
if (*member_count > 0 && *members == NULL)
return FAIL;
for (int i = 0; i < parent_count; ++i)
{
// parent members need to be copied
ocmember_T *m = *members + i;
*m = parent_members[i];
m->ocm_name = vim_strsave(m->ocm_name);
if (m->ocm_init != NULL)
m->ocm_init = vim_strsave(m->ocm_init);
}
if (gap->ga_len > 0)
// new members are moved
mch_memmove(*members + parent_count,
gap->ga_data, sizeof(ocmember_T) * gap->ga_len);
VIM_CLEAR(gap->ga_data);
return OK;
}
/*
* Convert a member index "idx" of interface "itf" to the member index of class
* "cl" implementing that interface.
*/
int
object_index_from_itf_index(class_T *itf, int is_method, int idx, class_T *cl)
{
if (idx >= (is_method ? itf->class_obj_method_count
: itf->class_obj_member_count))
{
siemsg("index %d out of range for interface %s", idx, itf->class_name);
return 0;
}
// If "cl" is the interface or the class that is extended, then the method
// index can be used directly and there is no need to search for the method
// index in one of the child classes.
if (cl == itf)
return idx;
itf2class_T *i2c = NULL;
int searching = TRUE;
int method_offset = 0;
for (class_T *super = cl; super != NULL && searching;
super = super->class_extends)
{
for (i2c = itf->class_itf2class; i2c != NULL; i2c = i2c->i2c_next)
{
if (i2c->i2c_class == super && i2c->i2c_is_method == is_method)
{
searching = FALSE;
break;
}
}
if (searching && is_method)
// The parent class methods are stored after the current class
// methods.
method_offset += super->class_obj_method_count_child;
}
if (i2c == NULL)
{
siemsg("class %s not found on interface %s",
cl->class_name, itf->class_name);
return 0;
}
// A table follows the i2c for the class
int *table = (int *)(i2c + 1);
// "method_offset" is 0, if method is in the current class. If method
// is in a parent class, then it is non-zero.
return table[idx] + method_offset;
}
/*
* Check whether a class named "extends_name" is present. If the class is
* valid, then "extends_clp" is set with the class pointer.
* Returns TRUE if the class name "extends_names" is a valid class.
*/
static int
validate_extends_class(
class_T *cl,
char_u *extends_name,
class_T **extends_clp,
int is_class)
{
typval_T tv;
int success = FALSE;
if (STRCMP(cl->class_name, extends_name) == 0)
{
semsg(_(e_cannot_extend_str), extends_name);
return success;
}
tv.v_type = VAR_UNKNOWN;
if (eval_variable_import(extends_name, &tv) == FAIL)
{
semsg(_(e_class_name_not_found_str), extends_name);
return success;
}
if (tv.v_type != VAR_CLASS || tv.vval.v_class == NULL
|| (is_class && IS_INTERFACE(tv.vval.v_class))
|| (!is_class && !IS_INTERFACE(tv.vval.v_class))
|| (is_class && IS_ENUM(tv.vval.v_class)))
{
// a class cannot extend an interface
// an interface cannot extend a class
// a class cannot extend an enum.
semsg(_(e_cannot_extend_str), extends_name);
}
else
{
class_T *extends_cl = tv.vval.v_class;
++extends_cl->class_refcount;
*extends_clp = extends_cl;
success = TRUE;
}
clear_tv(&tv);
return success;
}
/*
* Check method names in the parent class lineage to make sure the access is
* the same for overridden methods.
*/
static int
validate_extends_methods(
garray_T *objmethods_gap,
class_T *extends_cl)
{
class_T *super = extends_cl;
int method_count = objmethods_gap->ga_len;
ufunc_T **cl_fp = (ufunc_T **)(objmethods_gap->ga_data);
while (super != NULL)
{
int extends_method_count = super->class_obj_method_count_child;
if (extends_method_count == 0)
{
super = super->class_extends;
continue;
}
ufunc_T **extends_methods = super->class_obj_methods;
for (int i = 0; i < extends_method_count; i++)
{
char_u *pstr = extends_methods[i]->uf_name;
int extends_private = (*pstr == '_');
if (extends_private)
pstr++;
// When comparing the method names, ignore the access type (public
// and private methods are considered the same).
for (int j = 0; j < method_count; j++)
{
char_u *qstr = cl_fp[j]->uf_name;
int priv_method = (*qstr == '_');
if (priv_method)
qstr++;
if (STRCMP(pstr, qstr) == 0 && priv_method != extends_private)
{
// Method access is different between the super class and
// the subclass
semsg(_(e_method_str_of_class_str_has_different_access),
cl_fp[j]->uf_name, super->class_name);
return FALSE;
}
}
}
super = super->class_extends;
}
return TRUE;
}
/*
* Check whether a object member variable in "objmembers_gap" is a duplicate of
* a member in any of the extended parent class lineage. Returns TRUE if there
* are no duplicates.
*/
static int
extends_check_dup_members(
garray_T *objmembers_gap,
class_T *extends_cl)
{
int member_count = objmembers_gap->ga_len;
if (member_count == 0)
return TRUE;
ocmember_T *members = (ocmember_T *)(objmembers_gap->ga_data);
// Validate each member variable
for (int c_i = 0; c_i < member_count; c_i++)
{
class_T *p_cl = extends_cl;
ocmember_T *c_m = members + c_i;
char_u *pstr = (*c_m->ocm_name == '_')
? c_m->ocm_name + 1 : c_m->ocm_name;
// Check in all the parent classes in the lineage
while (p_cl != NULL)
{
int p_member_count = p_cl->class_obj_member_count;
if (p_member_count == 0)
{
p_cl = p_cl->class_extends;
continue;
}
ocmember_T *p_members = p_cl->class_obj_members;
// Compare against all the members in the parent class
for (int p_i = 0; p_i < p_member_count; p_i++)
{
ocmember_T *p_m = p_members + p_i;
char_u *qstr = (*p_m->ocm_name == '_')
? p_m->ocm_name + 1 : p_m->ocm_name;
if (STRCMP(pstr, qstr) == 0)
{
semsg(_(e_duplicate_variable_str), c_m->ocm_name);
return FALSE;
}
}
p_cl = p_cl->class_extends;
}
}
return TRUE;
}
/*
* Compare the variable type of interface variables in "objmembers_gap" against
* the variable in any of the extended super interface lineage. Used to
* compare the variable types when extending interfaces. Returns TRUE if the
* variable types are the same.
*/
static int
extends_check_intf_var_type(
garray_T *objmembers_gap,
class_T *extends_cl)
{
int member_count = objmembers_gap->ga_len;
if (member_count == 0)
return TRUE;
ocmember_T *members = (ocmember_T *)(objmembers_gap->ga_data);
// Validate each member variable
for (int c_i = 0; c_i < member_count; c_i++)
{
class_T *p_cl = extends_cl;
ocmember_T *c_m = members + c_i;
int var_found = FALSE;
// Check in all the parent classes in the lineage
while (p_cl != NULL && !var_found)
{
int p_member_count = p_cl->class_obj_member_count;
if (p_member_count == 0)
{
p_cl = p_cl->class_extends;
continue;
}
ocmember_T *p_members = p_cl->class_obj_members;
// Compare against all the members in the parent class
for (int p_i = 0; p_i < p_member_count; p_i++)
{
where_T where = WHERE_INIT;
ocmember_T *p_m = p_members + p_i;
if (STRCMP(p_m->ocm_name, c_m->ocm_name) != 0)
continue;
// Ensure the type is matching.
where.wt_func_name = (char *)c_m->ocm_name;
where.wt_kind = WT_MEMBER;
if (check_type(p_m->ocm_type, c_m->ocm_type, TRUE,
where) == FAIL)
return FALSE;
var_found = TRUE;
}
p_cl = p_cl->class_extends;
}
}
return TRUE;
}
/*
* When extending an abstract class, check whether all the abstract methods in
* the parent class are implemented. Returns TRUE if all the methods are
* implemented.
*/
static int
validate_abstract_class_methods(
garray_T *classmethods_gap,
garray_T *objmethods_gap,
class_T *extends_cl)
{
for (int loop = 1; loop <= 2; ++loop)
{
// loop == 1: check class methods
// loop == 2: check object methods
int extends_method_count = loop == 1
? extends_cl->class_class_function_count
: extends_cl->class_obj_method_count;
if (extends_method_count == 0)
continue;
ufunc_T **extends_methods = loop == 1
? extends_cl->class_class_functions
: extends_cl->class_obj_methods;
int method_count = loop == 1 ? classmethods_gap->ga_len
: objmethods_gap->ga_len;
ufunc_T **cl_fp = (ufunc_T **)(loop == 1
? classmethods_gap->ga_data
: objmethods_gap->ga_data);
for (int i = 0; i < extends_method_count; i++)
{
ufunc_T *uf = extends_methods[i];
if (!IS_ABSTRACT_METHOD(uf))
continue;
int concrete_method_found = FALSE;
int j = 0;
// Check if the abstract method is already implemented in one of
// the parent classes.
for (j = 0; !concrete_method_found && j < i; j++)
{
ufunc_T *uf2 = extends_methods[j];
if (!IS_ABSTRACT_METHOD(uf2) &&
STRCMP(uf->uf_name, uf2->uf_name) == 0)
concrete_method_found = TRUE;
}
if (concrete_method_found)
continue;
for (j = 0; j < method_count; j++)
{
if (STRCMP(uf->uf_name, cl_fp[j]->uf_name) == 0)
{
concrete_method_found = TRUE;
break;
}
}
if (!concrete_method_found)
{
semsg(_(e_abstract_method_str_not_implemented), uf->uf_name);
return FALSE;
}
}
}
return TRUE;
}
/*
* Returns TRUE if the interface variable "if_var" is present in the list of
* variables in "cl_mt" or in the parent lineage of one of the extended classes
* in "extends_cl". For a class variable, 'is_class_var' is TRUE.
*/
static int
intf_variable_present(
char_u *intf_class_name,
ocmember_T *if_var,
ocmember_T *cl_mt,
int cl_member_count,
class_T *extends_cl)
{
int variable_present = FALSE;
for (int cl_i = 0; cl_i < cl_member_count; ++cl_i)
{
ocmember_T *m = &cl_mt[cl_i];
where_T where = WHERE_INIT;
if (STRCMP(if_var->ocm_name, m->ocm_name) != 0)
continue;
// Ensure the access type is same
if (if_var->ocm_access != m->ocm_access)
{
semsg(_(e_variable_str_of_interface_str_has_different_access),
if_var->ocm_name, intf_class_name);
return FALSE;
}
// Ensure the type is matching.
if (m->ocm_type == &t_any)
{
// variable type is not specified. Use the variable type in the
// interface.
m->ocm_type = if_var->ocm_type;
}
else
{
where.wt_func_name = (char *)m->ocm_name;
where.wt_kind = WT_MEMBER;
if (check_type(if_var->ocm_type, m->ocm_type, TRUE,
where) == FAIL)
return FALSE;
}
variable_present = TRUE;
break;
}
if (!variable_present && extends_cl != NULL)
{
int ext_cl_count = extends_cl->class_obj_member_count;
ocmember_T *ext_cl_mt = extends_cl->class_obj_members;
return intf_variable_present(intf_class_name, if_var,
ext_cl_mt, ext_cl_count,
extends_cl->class_extends);
}
return variable_present;
}
/*
* Check the variables of the interface class "ifcl" match object variables
* ("objmembers_gap") of a class.
* Returns TRUE if the object variables names are valid.
*/
static int
validate_interface_variables(
char_u *intf_class_name,
class_T *ifcl,
garray_T *objmembers_gap,
class_T *extends_cl)
{
int if_count = ifcl->class_obj_member_count;
if (if_count == 0)
return TRUE;
ocmember_T *if_ms = ifcl->class_obj_members;
ocmember_T *cl_ms = (ocmember_T *)(objmembers_gap->ga_data);
int cl_count = objmembers_gap->ga_len;
for (int if_i = 0; if_i < if_count; ++if_i)
{
if (!intf_variable_present(intf_class_name, &if_ms[if_i], cl_ms,
cl_count, extends_cl))
{
semsg(_(e_variable_str_of_interface_str_not_implemented),
if_ms[if_i].ocm_name, intf_class_name);
return FALSE;
}
}
return TRUE;
}
/*
* Returns TRUE if the method signature of "if_method" and "cl_method" matches.
*/
static int
intf_method_type_matches(ufunc_T *if_method, ufunc_T *cl_method)
{
where_T where = WHERE_INIT;
// Ensure the type is matching.
where.wt_func_name = (char *)if_method->uf_name;
where.wt_kind = WT_METHOD;
if (check_type(if_method->uf_func_type, cl_method->uf_func_type, TRUE,
where) == FAIL)
return FALSE;
return TRUE;
}
/*
* Returns TRUE if the interface method "if_ufunc" is present in the list of
* methods in "cl_fp" or in the parent lineage of one of the extended classes
* in "extends_cl". For a class method, 'is_class_method' is TRUE.
*/
static int
intf_method_present(
ufunc_T *if_ufunc,
ufunc_T **cl_fp,
int cl_count,
class_T *extends_cl)
{
int method_present = FALSE;
for (int cl_i = 0; cl_i < cl_count; ++cl_i)
{
char_u *cl_name = cl_fp[cl_i]->uf_name;
if (STRCMP(if_ufunc->uf_name, cl_name) == 0)
{
// Ensure the type is matching.
if (!intf_method_type_matches(if_ufunc, cl_fp[cl_i]))
return FALSE;
method_present = TRUE;
break;
}
}
if (!method_present && extends_cl != NULL)
{
ufunc_T **ext_cl_fp = (ufunc_T **)(extends_cl->class_obj_methods);
int ext_cl_count = extends_cl->class_obj_method_count;
return intf_method_present(if_ufunc, ext_cl_fp, ext_cl_count,
extends_cl->class_extends);
}
return method_present;
}
/*
* Validate that a new class implements all the class/instance methods in the
* interface "ifcl". The new class methods are in "classfunctions_gap" and the
* new object methods are in "objmemthods_gap". Also validates the method
* types.
* Returns TRUE if all the interface class/object methods are implemented in
* the new class.
*/
static int
validate_interface_methods(
char_u *intf_class_name,
class_T *ifcl,
garray_T *objmethods_gap,
class_T *extends_cl)
{
int if_count = ifcl->class_obj_method_count;
if (if_count == 0)
return TRUE;
ufunc_T **if_fp = ifcl->class_obj_methods;
ufunc_T **cl_fp = (ufunc_T **)(objmethods_gap->ga_data);
int cl_count = objmethods_gap->ga_len;
for (int if_i = 0; if_i < if_count; ++if_i)
{
char_u *if_name = if_fp[if_i]->uf_name;
if (!intf_method_present(if_fp[if_i], cl_fp, cl_count, extends_cl))
{
semsg(_(e_method_str_of_interface_str_not_implemented),
if_name, intf_class_name);
return FALSE;
}
}
return TRUE;
}
/*
* Validate all the "implements" classes when creating a new class. The
* classes are returned in "intf_classes". The class functions, class members,
* object methods and object members in the new class are in
* "classfunctions_gap", "classmembers_gap", "objmethods_gap", and
* "objmembers_gap" respectively.
*/
static int
validate_implements_classes(
garray_T *impl_gap,
garray_T *intf_classes_gap,
garray_T *objmethods_gap,
garray_T *objmembers_gap,
class_T *extends_cl)
{
int success = TRUE;
for (int i = 0; i < impl_gap->ga_len && success; ++i)
{
char_u *impl = ((char_u **)impl_gap->ga_data)[i];
typval_T tv;
tv.v_type = VAR_UNKNOWN;
if (eval_variable_import(impl, &tv) == FAIL)
{
semsg(_(e_interface_name_not_found_str), impl);
success = FALSE;
break;
}
if (tv.v_type != VAR_CLASS
|| tv.vval.v_class == NULL
|| !IS_INTERFACE(tv.vval.v_class))
{
semsg(_(e_not_valid_interface_str), impl);
success = FALSE;
clear_tv(&tv);
break;
}
class_T *ifcl = tv.vval.v_class;
if (ga_grow(intf_classes_gap, 1) == FAIL)
{
success = FALSE;
clear_tv(&tv);
break;
}
((class_T **)intf_classes_gap->ga_data)[intf_classes_gap->ga_len]
= ifcl;
intf_classes_gap->ga_len++;
++ifcl->class_refcount;
// check the variables of the interface match the members of the class
success = validate_interface_variables(impl, ifcl, objmembers_gap,
extends_cl);
// check the functions/methods of the interface match the
// functions/methods of the class
if (success)
success = validate_interface_methods(impl, ifcl, objmethods_gap,
extends_cl);
clear_tv(&tv);
}
return success;
}
/*
* Returns TRUE if the interface class "ifcl" is already present in the
* "intf_classes_gap" grow array.
*/
static int
is_interface_class_present(garray_T *intf_classes_gap, class_T *ifcl)
{
for (int j = 0; j < intf_classes_gap->ga_len; j++)
{
if (((class_T **)intf_classes_gap)[j] == ifcl)
return TRUE;
}
return FALSE;
}
/*
* Add interface "ifcl" from a super class to "intf_classes_gap" and the class
* name to "impl_gap".
*/
static int
add_interface_from_super_class(
class_T *ifcl,
garray_T *impl_gap,
garray_T *intf_classes_gap)
{
char_u *intf_name;
// Add the interface name to "impl_gap"
intf_name = vim_strsave(ifcl->class_name);
if (intf_name == NULL)
return FALSE;
if (ga_grow(impl_gap, 1) == FAIL)
return FALSE;
char_u **intf_names = (char_u **)impl_gap->ga_data;
intf_names[impl_gap->ga_len] = intf_name;
impl_gap->ga_len++;
// Add the interface class to "intf_classes_gap"
if (ga_grow(intf_classes_gap, 1) == FAIL)
return FALSE;
class_T **intf_classes = (class_T **)intf_classes_gap->ga_data;
intf_classes[intf_classes_gap->ga_len] = ifcl;
intf_classes_gap->ga_len++;
++ifcl->class_refcount;
return TRUE;
}
/*
* Add "super" class interfaces to "intf_classes_gap" (if not present already)
* Add the interface class names to "impl_gap".
*/
static int
add_super_class_interfaces(
class_T *super,
garray_T *impl_gap,
garray_T *intf_classes_gap)
{
// Iterate through all the interfaces implemented by "super"
for (int i = 0; i < super->class_interface_count; i++)
{
class_T *ifcl = super->class_interfaces_cl[i];
if (!is_interface_class_present(intf_classes_gap, ifcl))
add_interface_from_super_class(ifcl, impl_gap, intf_classes_gap);
}
return TRUE;
}
/*
* Check no function argument name is used as a class member.
* (Object members are always accessed with "this." prefix, so no need
* to check them.)
*/
static int
check_func_arg_names(
garray_T *classfunctions_gap,
garray_T *objmethods_gap,
garray_T *classmembers_gap)
{
// loop 1: class functions, loop 2: object methods
for (int loop = 1; loop <= 2; ++loop)
{
garray_T *gap = loop == 1 ? classfunctions_gap : objmethods_gap;
for (int fi = 0; fi < gap->ga_len; ++fi)
{
ufunc_T *uf = ((ufunc_T **)gap->ga_data)[fi];
for (int i = 0; i < uf->uf_args.ga_len; ++i)
{
char_u *aname = ((char_u **)uf->uf_args.ga_data)[i];
garray_T *mgap = classmembers_gap;
// Check all the class member names
for (int mi = 0; mi < mgap->ga_len; ++mi)
{
char_u *mname =
((ocmember_T *)mgap->ga_data + mi)->ocm_name;
if (STRCMP(aname, mname) == 0)
{
if (uf->uf_script_ctx.sc_sid > 0)
SOURCING_LNUM = uf->uf_script_ctx.sc_lnum;
semsg(_(e_argument_already_declared_in_class_str),
aname);
return FALSE;
}
}
}
}
}
return TRUE;
}
/*
* Returns TRUE if 'varname' is a reserved keyword name
*/
static int
is_reserved_varname(char_u *varname, char_u *varname_end)
{
int reserved = FALSE;
char_u save_varname_end = *varname_end;
*varname_end = NUL;
reserved = check_reserved_name(varname, FALSE) == FAIL;
*varname_end = save_varname_end;
return reserved;
}
/*
* Returns TRUE if the variable "varname" is already defined either as a class
* variable or as an object variable.
*/
static int
is_duplicate_variable(
garray_T *class_members,
garray_T *obj_members,
char_u *varname,
char_u *varname_end)
{
char_u *name = vim_strnsave(varname, varname_end - varname);
char_u *pstr = (*name == '_') ? name + 1 : name;
int dup = FALSE;
for (int loop = 1; loop <= 2; loop++)
{
// loop == 1: class variables, loop == 2: object variables
garray_T *vgap = (loop == 1) ? class_members : obj_members;
for (int i = 0; i < vgap->ga_len; ++i)
{
ocmember_T *m = ((ocmember_T *)vgap->ga_data) + i;
char_u *qstr = *m->ocm_name == '_' ? m->ocm_name + 1
: m->ocm_name;
if (STRCMP(pstr, qstr) == 0)
{
semsg(_(e_duplicate_variable_str), name);
dup = TRUE;
break;
}
}
}
vim_free(name);
return dup;
}
/*
* Returns TRUE if the method "name" is already defined.
*/
static int
is_duplicate_method(
garray_T *classmethods_gap,
garray_T *objmethods_gap,
char_u *name)
{
char_u *pstr = (*name == '_') ? name + 1 : name;
// loop 1: class methods, loop 2: object methods
for (int loop = 1; loop <= 2; loop++)
{
garray_T *fgap = (loop == 1) ? classmethods_gap : objmethods_gap;
for (int i = 0; i < fgap->ga_len; ++i)
{
char_u *n = ((ufunc_T **)fgap->ga_data)[i]->uf_name;
char_u *qstr = *n == '_' ? n + 1 : n;
if (STRCMP(pstr, qstr) == 0)
{
semsg(_(e_duplicate_function_str), name);
return TRUE;
}
}
}
return FALSE;
}
/*
* Returns TRUE if the constructor is valid.
*/
static int
is_valid_constructor(ufunc_T *uf, int is_abstract, int has_static)
{
// Constructors are not allowed in abstract classes.
if (is_abstract)
{
emsg(_(e_cannot_define_new_method_in_abstract_class));
return FALSE;
}
// A constructor is always static, no need to define it so.
if (has_static)
{
emsg(_(e_cannot_define_new_method_as_static));
return FALSE;
}
// A return type should not be specified for the new()
// constructor method.
if (uf->uf_ret_type->tt_type != VAR_VOID)
{
emsg(_(e_cannot_use_a_return_type_with_new_method));
return FALSE;
}
return TRUE;
}
/*
* Returns TRUE if 'uf' is a supported builtin method and has the correct
* method signature.
*/
static int
object_check_builtin_method_sig(ufunc_T *uf)
{
char_u *name = uf->uf_name;
int valid = FALSE;
type_T method_sig;
type_T method_rt;
where_T where = WHERE_INIT;
// validate the method signature
CLEAR_FIELD(method_sig);
CLEAR_FIELD(method_rt);
method_sig.tt_type = VAR_FUNC;
if (STRCMP(name, "len") == 0)
{
// def __len(): number
method_rt.tt_type = VAR_NUMBER;
method_sig.tt_member = &method_rt;
valid = TRUE;
}
else if (STRCMP(name, "empty") == 0)
{
// def __empty(): bool
method_rt.tt_type = VAR_BOOL;
method_sig.tt_member = &method_rt;
valid = TRUE;
}
else if (STRCMP(name, "string") == 0)
{
// def __string(): string
method_rt.tt_type = VAR_STRING;
method_sig.tt_member = &method_rt;
valid = TRUE;
}
else
semsg(_(e_builtin_object_method_str_not_supported), uf->uf_name);
where.wt_func_name = (char *)uf->uf_name;
where.wt_kind = WT_METHOD;
if (valid && !check_type(&method_sig, uf->uf_func_type, TRUE, where))
valid = FALSE;
return valid;
}
/*
* Returns TRUE if "funcname" is a supported builtin object method name
*/
int
is_valid_builtin_obj_methodname(char_u *funcname)
{
switch (funcname[0])
{
case 'e':
return STRNCMP(funcname, "empty", 5) == 0;
case 'l':
return STRNCMP(funcname, "len", 3) == 0;
case 'n':
return STRNCMP(funcname, "new", 3) == 0;
case 's':
return STRNCMP(funcname, "string", 6) == 0;
}
return FALSE;
}
/*
* Returns the builtin method "name" in object "obj". Returns NULL if the
* method is not found.
*/
ufunc_T *
class_get_builtin_method(
class_T *cl,
class_builtin_T builtin_method,
int *method_idx)
{
*method_idx = -1;
if (cl == NULL)
return NULL;
*method_idx = cl->class_builtin_methods[builtin_method];
return *method_idx != -1 ? cl->class_obj_methods[*method_idx] : NULL;
}
/*
* Update the interface class lookup table for the member index on the
* interface to the member index in the class implementing the interface.
* And a lookup table for the object method index on the interface
* to the object method index in the class implementing the interface.
* This is also used for updating the lookup table for the extended class
* hierarchy.
*/
static int
update_member_method_lookup_table(
class_T *ifcl,
class_T *cl,
garray_T *objmethods,
int pobj_method_offset)
{
if (ifcl == NULL)
return OK;
// Table for members.
itf2class_T *if2cl = alloc_clear(sizeof(itf2class_T)
+ ifcl->class_obj_member_count * sizeof(int));
if (if2cl == NULL)
return FAIL;
if2cl->i2c_next = ifcl->class_itf2class;
ifcl->class_itf2class = if2cl;
if2cl->i2c_class = cl;
if2cl->i2c_is_method = FALSE;
for (int if_i = 0; if_i < ifcl->class_obj_member_count; ++if_i)
for (int cl_i = 0; cl_i < cl->class_obj_member_count; ++cl_i)
{
if (STRCMP(ifcl->class_obj_members[if_i].ocm_name,
cl->class_obj_members[cl_i].ocm_name) == 0)
{
int *table = (int *)(if2cl + 1);
table[if_i] = cl_i;
break;
}
}
// Table for methods.
if2cl = alloc_clear(sizeof(itf2class_T)
+ ifcl->class_obj_method_count * sizeof(int));
if (if2cl == NULL)
return FAIL;
if2cl->i2c_next = ifcl->class_itf2class;
ifcl->class_itf2class = if2cl;
if2cl->i2c_class = cl;
if2cl->i2c_is_method = TRUE;
for (int if_i = 0; if_i < ifcl->class_obj_method_count; ++if_i)
{
int done = FALSE;
for (int cl_i = 0; cl_i < objmethods->ga_len; ++cl_i)
{
if (STRCMP(ifcl->class_obj_methods[if_i]->uf_name,
((ufunc_T **)objmethods->ga_data)[cl_i]->uf_name) == 0)
{
int *table = (int *)(if2cl + 1);
table[if_i] = cl_i;
done = TRUE;
break;
}
}
// extended class object method is not overridden by the child class.
// Keep the method declared in one of the parent classes in the
// lineage.
if (!done)
{
// If "ifcl" is not the immediate parent of "cl", then search in
// the intermediate parent classes.
if (cl->class_extends != ifcl)
{
class_T *parent = cl->class_extends;
int method_offset = objmethods->ga_len;
while (!done && parent != NULL && parent != ifcl)
{
for (int cl_i = 0;
cl_i < parent->class_obj_method_count_child; ++cl_i)
{
if (STRCMP(ifcl->class_obj_methods[if_i]->uf_name,
parent->class_obj_methods[cl_i]->uf_name)
== 0)
{
int *table = (int *)(if2cl + 1);
table[if_i] = method_offset + cl_i;
done = TRUE;
break;
}
}
method_offset += parent->class_obj_method_count_child;
parent = parent->class_extends;
}
}
if (!done)
{
int *table = (int *)(if2cl + 1);
table[if_i] = pobj_method_offset + if_i;
}
}
}
return OK;
}
/*
* Update the member and object method lookup tables for a new class in the
* interface class.
* For each interface add a lookup table for the member index on the interface
* to the member index in the new class. And a lookup table for the object
* method index on the interface to the object method index in the new class.
*/
static int
add_lookup_tables(class_T *cl, class_T *extends_cl, garray_T *objmethods_gap)
{
// update the lookup table for all the implemented interfaces
for (int i = 0; i < cl->class_interface_count; ++i)
{
class_T *ifcl = cl->class_interfaces_cl[i];
// update the lookup table for this interface and all its super
// interfaces.
while (ifcl != NULL)
{
if (update_member_method_lookup_table(ifcl, cl, objmethods_gap,
0) == FAIL)
return FAIL;
ifcl = ifcl->class_extends;
}
}
// Update the lookup table for the extended class, if any
if (extends_cl != NULL)
{
class_T *pclass = extends_cl;
int pobj_method_offset = objmethods_gap->ga_len;
// Update the entire lineage of extended classes.
while (pclass != NULL)
{
if (update_member_method_lookup_table(pclass, cl,
objmethods_gap, pobj_method_offset) == FAIL)
return FAIL;
pobj_method_offset += pclass->class_obj_method_count_child;
pclass = pclass->class_extends;
}
}
return OK;
}
/*
* Add class members to a new class. Allocate a typval for each class member
* and initialize it.
*/
static int
add_class_members(class_T *cl, exarg_T *eap, garray_T *type_list_gap)
{
// Allocate a typval for each class member and initialize it.
cl->class_members_tv = ALLOC_CLEAR_MULT(typval_T,
cl->class_class_member_count);
if (cl->class_members_tv == NULL)
return FAIL;
for (int i = 0; i < cl->class_class_member_count; ++i)
{
ocmember_T *m = &cl->class_class_members[i];
typval_T *tv = &cl->class_members_tv[i];
if (m->ocm_init != NULL)
{
sctx_T save_current_sctx = current_sctx;
current_sctx = m->ocm_init_sctx;
typval_T *etv = eval_expr(m->ocm_init, eap);
current_sctx = save_current_sctx;
if (etv == NULL)
return FAIL;
if (m->ocm_type->tt_type == VAR_ANY
&& !(m->ocm_flags & OCMFLAG_HAS_TYPE)
&& etv->v_type != VAR_SPECIAL)
// If the member variable type is not yet set, then use
// the initialization expression type.
m->ocm_type = typval2type(etv, get_copyID(),
type_list_gap,
TVTT_DO_MEMBER|TVTT_MORE_SPECIFIC);
*tv = *etv;
vim_free(etv);
}
else
{
// TODO: proper default value
tv->v_type = m->ocm_type->tt_type;
tv->vval.v_string = NULL;
}
set_tv_type(tv, m->ocm_type);
if (m->ocm_flags & OCMFLAG_CONST)
item_lock(tv, DICT_MAXNEST, TRUE, TRUE);
}
return OK;
}
/*
* Add a default constructor method (new()) to the class "cl".
*/
static void
add_default_constructor(
class_T *cl,
garray_T *classfunctions_gap,
garray_T *type_list_gap)
{
garray_T fga;
int is_enum = IS_ENUM(cl);
ga_init2(&fga, 1, 1000);
ga_concat(&fga, (char_u *)"new(");
for (int i = 0; i < cl->class_obj_member_count; ++i)
{
if (i < 2 && is_enum)
// The first two object variables in an enum are the enum value
// name and ordinal. Don't initialize these object variables in
// the default constructor as they are already initialized right
// after creating the object.
continue;
if (i > (is_enum ? 2 : 0))
ga_concat(&fga, (char_u *)", ");
ga_concat(&fga, (char_u *)"this.");
ocmember_T *m = cl->class_obj_members + i;
ga_concat(&fga, (char_u *)m->ocm_name);
ga_concat(&fga, (char_u *)" = v:none");
}
ga_concat(&fga, (char_u *)")\nenddef\n");
ga_append(&fga, NUL);
exarg_T fea;
CLEAR_FIELD(fea);
fea.cmdidx = CMD_def;
fea.cmd = fea.arg = fga.ga_data;
garray_T lines_to_free;
ga_init2(&lines_to_free, sizeof(char_u *), 50);
ufunc_T *nf = define_function(&fea, NULL, &lines_to_free, CF_CLASS,
cl->class_obj_members, cl->class_obj_member_count);
ga_clear_strings(&lines_to_free);
vim_free(fga.ga_data);
if (nf != NULL && ga_grow(classfunctions_gap, 1) == OK)
{
((ufunc_T **)classfunctions_gap->ga_data)[classfunctions_gap->ga_len]
= nf;
++classfunctions_gap->ga_len;
nf->uf_flags |= FC_NEW;
nf->uf_ret_type = get_type_ptr(type_list_gap);
if (nf->uf_ret_type != NULL)
{
nf->uf_ret_type->tt_type = VAR_OBJECT;
nf->uf_ret_type->tt_class = cl;
nf->uf_ret_type->tt_argcount = 0;
nf->uf_ret_type->tt_args = NULL;
}
}
}
/*
* Add the class methods and object methods to the new class "cl".
* When extending a class "extends_cl", add the instance methods from the
* parent class also.
* Returns OK on success and FAIL on memory allocation failure.
*/
static int
add_classfuncs_objmethods(
class_T *cl,
class_T *extends_cl,
garray_T *classfunctions_gap,
garray_T *objmethods_gap)
{
// loop 1: class functions, loop 2: object methods
for (int loop = 1; loop <= 2; ++loop)
{
garray_T *gap = loop == 1 ? classfunctions_gap : objmethods_gap;
int *fcount = loop == 1 ? &cl->class_class_function_count
: &cl->class_obj_method_count;
ufunc_T ***fup = loop == 1 ? &cl->class_class_functions
: &cl->class_obj_methods;
int parent_count = 0;
if (extends_cl != NULL)
// Include object methods from the parent.
// Don't include the parent class methods.
parent_count = loop == 1
? 0
: extends_cl->class_obj_method_count;
*fcount = parent_count + gap->ga_len;
if (*fcount == 0)
{
*fup = NULL;
continue;
}
*fup = ALLOC_MULT(ufunc_T *, *fcount);
if (*fup == NULL)
return FAIL;
if (gap->ga_len != 0)
mch_memmove(*fup, gap->ga_data, sizeof(ufunc_T *) * gap->ga_len);
VIM_CLEAR(gap->ga_data);
if (loop == 1)
cl->class_class_function_count_child = gap->ga_len;
else
cl->class_obj_method_count_child = gap->ga_len;
if (loop == 2)
{
// Copy instance methods from the parent.
for (int i = 0; i < parent_count; ++i)
{
// Can't use the same parent function, because "uf_class" is
// different and compilation will have a different result.
// Put them after the functions in the current class, object
// methods may be overruled, then "super.Method()" is used to
// find a method from the parent.
ufunc_T *pf = (extends_cl->class_obj_methods)[i];
(*fup)[gap->ga_len + i] = copy_function(pf);
// If the child class overrides a function from the parent
// the signature must be equal.
char_u *pname = pf->uf_name;
for (int ci = 0; ci < gap->ga_len; ++ci)
{
ufunc_T *cf = (*fup)[ci];
char_u *cname = cf->uf_name;
if (STRCMP(pname, cname) == 0)
{
where_T where = WHERE_INIT;
where.wt_func_name = (char *)pname;
where.wt_kind = WT_METHOD;
(void)check_type(pf->uf_func_type, cf->uf_func_type,
TRUE, where);
}
}
}
}
// Set the class pointer on all the functions and object methods.
for (int i = 0; i < *fcount; ++i)
{
ufunc_T *fp = (*fup)[i];
fp->uf_class = cl;
if (i < gap->ga_len)
fp->uf_defclass = cl;
if (loop == 2)
fp->uf_flags |= FC_OBJECT;
}
ga_clear(gap);
}
return OK;
}
/*
* Update the index of object methods called by builtin functions.
*/
static void
update_builtin_method_index(class_T *cl)
{
int i;
for (i = 0; i < CLASS_BUILTIN_MAX; i++)
cl->class_builtin_methods[i] = -1;
for (i = 0; i < cl->class_obj_method_count; i++)
{
ufunc_T *uf = cl->class_obj_methods[i];
if (cl->class_builtin_methods[CLASS_BUILTIN_STRING] == -1
&& STRCMP(uf->uf_name, "string") == 0)
cl->class_builtin_methods[CLASS_BUILTIN_STRING] = i;
else if (cl->class_builtin_methods[CLASS_BUILTIN_EMPTY] == -1 &&
STRCMP(uf->uf_name, "empty") == 0)
cl->class_builtin_methods[CLASS_BUILTIN_EMPTY] = i;
else if (cl->class_builtin_methods[CLASS_BUILTIN_LEN] == -1 &&
STRCMP(uf->uf_name, "len") == 0)
cl->class_builtin_methods[CLASS_BUILTIN_LEN] = i;
}
}
/*
* Return the end of the class name starting at "arg". Valid characters in a
* class name are alphanumeric characters and "_". Also handles imported class
* names.
*/
static char_u *
find_class_name_end(char_u *arg)
{
char_u *end = arg;
while (ASCII_ISALNUM(*end) || *end == '_'
|| (*end == '.' && (ASCII_ISALNUM(end[1]) || end[1] == '_')))
++end;
return end;
}
/*
* Returns TRUE if the enum value "varname" is already defined.
*/
static int
is_duplicate_enum(
garray_T *enum_gap,
char_u *varname,
char_u *varname_end)
{
char_u *name = vim_strnsave(varname, varname_end - varname);
int dup = FALSE;
for (int i = 0; i < enum_gap->ga_len; ++i)
{
ocmember_T *m = ((ocmember_T *)enum_gap->ga_data) + i;
if (STRCMP(name, m->ocm_name) == 0)
{
semsg(_(e_duplicate_enum_str), name);
dup = TRUE;
break;
}
}
vim_free(name);
return dup;
}
/*
* Parse the enum values in "line" separated by comma and add them to "gap".
* If the last enum value is found, then "enum_end" is set to TRUE.
*/
static int
enum_parse_values(
exarg_T *eap,
class_T *en,
char_u *line,
garray_T *gap,
int *num_enum_values,
int *enum_end)
{
evalarg_T evalarg;
char_u *p = line;
char initexpr_buf[1024];
char_u last_char = NUL;
int rc = OK;
fill_evalarg_from_eap(&evalarg, eap, FALSE);
int did_emsg_before = did_emsg;
while (*p != NUL)
{
// ignore comment
if (*p == '#')
break;
if (!eval_isnamec1(*p))
{
semsg(_(e_invalid_enum_value_declaration_str), p);
break;
}
char_u *eni_name_start = p;
char_u *eni_name_end = to_name_end(p, FALSE);
if (is_duplicate_enum(gap, eni_name_start, eni_name_end))
break;
p = skipwhite(eni_name_end);
char_u *init_expr = NULL;
if (*p == '(')
{
if (VIM_ISWHITE(p[-1]))
{
semsg(_(e_no_white_space_allowed_before_str_str), "(", line);
break;
}
char_u *expr_start, *expr_end;
p = eni_name_start;
(void)skip_expr_concatenate(&p, &expr_start, &expr_end, &evalarg);
while (*expr_start && *expr_start != '(')
expr_start++;
if (expr_end > expr_start)
init_expr = vim_strnsave(expr_start, expr_end - expr_start);
}
if (init_expr == NULL)
vim_snprintf(initexpr_buf, sizeof(initexpr_buf), "%s.new()",
en->class_name);
else
{
vim_snprintf(initexpr_buf, sizeof(initexpr_buf), "%s.new%s",
en->class_name, init_expr);
vim_free(init_expr);
}
if (add_member(gap, eni_name_start, eni_name_end, FALSE,
TRUE, TRUE, TRUE, &en->class_object_type,
vim_strsave((char_u *)initexpr_buf)) == FAIL)
break;
++*num_enum_values;
if (*p != '#')
last_char = *p;
if (*p != NUL && *p != ',')
break;
if (*p == ',')
{
if (!IS_WHITE_OR_NUL(p[1]))
{
semsg(_(e_white_space_required_after_str_str), ",", line);
break;
}
if (VIM_ISWHITE(p[-1]))
{
semsg(_(e_no_white_space_allowed_before_str_str), ",", line);
break;
}
p = skipwhite(p + 1);
}
}
p = skipwhite(p);
if (*p != NUL && *p != '#')
{
if (did_emsg == did_emsg_before)
semsg(_(e_missing_comma_before_argument_str), p);
rc = FAIL;
}
if (last_char != ',')
// last enum value should not be terminated by ","
*enum_end = TRUE;
// Free the memory pointed by expr_start.
clear_evalarg(&evalarg, NULL);
return rc;
}
/*
* Add the "values" class variable (List of enum value objects) to the enum
* class "en"
*/
static int
enum_add_values_member(
class_T *en,
garray_T *gap,
int num_enum_values,
garray_T *type_list_gap)
{
garray_T fga;
int rc = FAIL;
ga_init2(&fga, 1, 1000);
ga_concat(&fga, (char_u *)"[");
for (int i = 0; i < num_enum_values; ++i)
{
ocmember_T *m = ((ocmember_T *)gap->ga_data) + i;
if (i > 0)
ga_concat(&fga, (char_u *)", ");
ga_concat(&fga, en->class_name);
ga_concat(&fga, (char_u *)".");
ga_concat(&fga, (char_u *)m->ocm_name);
}
ga_concat(&fga, (char_u *)"]");
ga_append(&fga, NUL);
char_u *varname = (char_u *)"values";
type_T *type = get_type_ptr(type_list_gap);
if (type == NULL)
goto done;
type->tt_type = VAR_LIST;
type->tt_member = get_type_ptr(type_list_gap);
if (type->tt_member != NULL)
{
type->tt_member->tt_type = VAR_OBJECT;
type->tt_member->tt_class = en;
}
rc = add_member(gap, varname, varname + 6, FALSE, FALSE, TRUE, TRUE, type,
vim_strsave((char_u *)fga.ga_data));
done:
vim_free(fga.ga_data);
return rc;
}
/*
* Clear the constructor method names in a enum class, so that an enum class
* cannot be instantiated.
*/
static void
enum_clear_constructors(class_T *en)
{
for (int i = 0; i < en->class_class_function_count; ++i)
{
ufunc_T *fp = en->class_class_functions[i];
if (fp->uf_flags & FC_NEW)
*fp->uf_name = NUL;
}
}
/*
* Initialize the name and ordinal object variable in the enum value "enval" in
* the enum "en". These values are set during the enum value object creation.
*/
void
enum_set_internal_obj_vars(class_T *en, object_T *enval)
{
int i;
for (i = 0; i < en->class_class_member_count; ++i)
{
typval_T *en_tv = en->class_members_tv + i;
if (en_tv != NULL && en_tv->v_type == VAR_UNKNOWN)
break;
}
// First object variable is the name
ocmember_T *value_ocm = en->class_class_members + i;
typval_T *name_tv = (typval_T *)(enval + 1);
name_tv->v_type = VAR_STRING;
name_tv->vval.v_string = vim_strsave(value_ocm->ocm_name);
// Second object variable is the ordinal
typval_T *ord_tv = (typval_T *)(name_tv + 1);
ord_tv->v_type = VAR_NUMBER;
ord_tv->vval.v_number = i;
}
/*
* Handle ":class" and ":abstract class" up to ":endclass".
* Handle ":enum" up to ":endenum".
* Handle ":interface" up to ":endinterface".
*/
void
ex_class(exarg_T *eap)
{
int is_class = eap->cmdidx == CMD_class;
int is_abstract = eap->cmdidx == CMD_abstract;
int is_enum = eap->cmdidx == CMD_enum;
int is_interface;
long start_lnum = SOURCING_LNUM;
char_u *arg = eap->arg;
if (is_abstract)
{
if (STRNCMP(arg, "class", 5) != 0 || !VIM_ISWHITE(arg[5]))
{
semsg(_(e_invalid_argument_str), arg);
return;
}
arg = skipwhite(arg + 5);
is_class = TRUE;
}
is_interface = !is_class && !is_enum;
if (!current_script_is_vim9()
|| (cmdmod.cmod_flags & CMOD_LEGACY)
|| !getline_equal(eap->ea_getline, eap->cookie, getsourceline))
{
if (is_class)
emsg(_(e_class_can_only_be_defined_in_vim9_script));
else if (is_enum)
emsg(_(e_enum_can_only_be_defined_in_vim9_script));
else
emsg(_(e_interface_can_only_be_defined_in_vim9_script));
return;
}
if (!ASCII_ISUPPER(*arg))
{
if (is_class)
semsg(_(e_class_name_must_start_with_uppercase_letter_str), arg);
else if (is_enum)
semsg(_(e_enum_name_must_start_with_uppercase_letter_str), arg);
else
semsg(_(e_interface_name_must_start_with_uppercase_letter_str),
arg);
return;
}
char_u *name_end = find_name_end(arg, NULL, NULL, FNE_CHECK_START);
if (!IS_WHITE_OR_NUL(*name_end))
{
semsg(_(e_white_space_required_after_name_str), arg);
return;
}
char_u *name_start = arg;
// TODO:
// generics: <Tkey, Tentry>
// Name for "extends BaseClass"
char_u *extends = NULL;
// Names for "implements SomeInterface"
garray_T ga_impl;
ga_init2(&ga_impl, sizeof(char_u *), 5);
arg = skipwhite(name_end);
while (*arg != NUL && *arg != '#' && *arg != '\n')
{
// TODO:
// specifies SomeInterface
if (STRNCMP(arg, "extends", 7) == 0 && IS_WHITE_OR_NUL(arg[7]))
{
if (is_enum)
{
emsg(_(e_enum_cannot_extend_class));
goto early_ret;
}
if (extends != NULL)
{
emsg(_(e_duplicate_extends));
goto early_ret;
}
arg = skipwhite(arg + 7);
char_u *end = find_class_name_end(arg);
if (!IS_WHITE_OR_NUL(*end))
{
semsg(_(e_white_space_required_after_name_str), arg);
goto early_ret;
}
extends = vim_strnsave(arg, end - arg);
if (extends == NULL)
goto early_ret;
arg = skipwhite(end + 1);
}
else if (STRNCMP(arg, "implements", 10) == 0
&& IS_WHITE_OR_NUL(arg[10]))
{
if (is_interface)
{
emsg(_(e_interface_cannot_use_implements));
goto early_ret;
}
if (ga_impl.ga_len > 0)
{
emsg(_(e_duplicate_implements));
goto early_ret;
}
arg = skipwhite(arg + 10);
for (;;)
{
char_u *impl_end = find_class_name_end(arg);
if ((!IS_WHITE_OR_NUL(*impl_end) && *impl_end != ',')
|| (*impl_end == ','
&& !IS_WHITE_OR_NUL(*(impl_end + 1))))
{
semsg(_(e_white_space_required_after_name_str), arg);
goto early_ret;
}
if (impl_end - arg == 0)
{
emsg(_(e_missing_name_after_implements));
goto early_ret;
}
char_u *iname = vim_strnsave(arg, impl_end - arg);
if (iname == NULL)
goto early_ret;
for (int i = 0; i < ga_impl.ga_len; ++i)
if (STRCMP(((char_u **)ga_impl.ga_data)[i], iname) == 0)
{
semsg(_(e_duplicate_interface_after_implements_str),
iname);
vim_free(iname);
goto early_ret;
}
if (ga_add_string(&ga_impl, iname) == FAIL)
{
vim_free(iname);
goto early_ret;
}
if (*impl_end != ',')
{
arg = skipwhite(impl_end);
break;
}
arg = skipwhite(impl_end + 1);
}
}
else
{
semsg(_(e_trailing_characters_str), arg);
early_ret:
vim_free(extends);
ga_clear_strings(&ga_impl);
return;
}
}
garray_T type_list; // list of pointers to allocated types
ga_init2(&type_list, sizeof(type_T *), 10);
// Growarray with class members declared in the class.
garray_T classmembers;
ga_init2(&classmembers, sizeof(ocmember_T), 10);
// Growarray with functions declared in the class.
garray_T classfunctions;
ga_init2(&classfunctions, sizeof(ufunc_T *), 10);
// Growarray with object members declared in the class.
garray_T objmembers;
ga_init2(&objmembers, sizeof(ocmember_T), 10);
// Growarray with object methods declared in the class.
garray_T objmethods;
ga_init2(&objmethods, sizeof(ufunc_T *), 10);
class_T *cl = NULL;
class_T *extends_cl = NULL; // class from "extends" argument
class_T **intf_classes = NULL;
int num_enum_values = 0;
cl = ALLOC_CLEAR_ONE(class_T);
if (cl == NULL)
goto cleanup;
if (is_enum)
cl->class_flags = CLASS_ENUM;
else if (is_interface)
cl->class_flags = CLASS_INTERFACE;
else if (is_abstract)
cl->class_flags = CLASS_ABSTRACT;
cl->class_refcount = 1;
cl->class_name = vim_strnsave(name_start, name_end - name_start);
if (cl->class_name == NULL)
goto cleanup;
cl->class_type.tt_type = VAR_CLASS;
cl->class_type.tt_class = cl;
cl->class_object_type.tt_type = VAR_OBJECT;
cl->class_object_type.tt_class = cl;
// Add the class to the script-local variables.
// TODO: handle other context, e.g. in a function
// TODO: does uf_hash need to be cleared?
typval_T tv;
tv.v_type = VAR_CLASS;
tv.vval.v_class = cl;
SOURCING_LNUM = start_lnum;
int rc = set_var_const(cl->class_name, current_sctx.sc_sid, NULL, &tv, FALSE, 0, 0);
if (rc == FAIL)
goto cleanup;
if (is_enum)
{
// All the enum classes have the name and ordinal object variables.
char_u *varname = (char_u *)"name";
if (add_member(&objmembers, varname, varname + 4, FALSE, FALSE, TRUE,
TRUE, &t_string, NULL) == FAIL)
goto cleanup;
varname = (char_u *)"ordinal";
if (add_member(&objmembers, varname, varname + 7, FALSE, FALSE, TRUE,
TRUE, &t_number, NULL) == FAIL)
goto cleanup;
}
// "export class" gets used when creating the class, don't use "is_export"
// for the items inside the class.
is_export = FALSE;
// When parsing an enum definition, this denotes whether all the enumerated
// values are parsed or not.
int enum_end = FALSE;
/*
* Go over the body of the class/interface until "endclass" or
* "endinterface" or "endenum" is found.
*/
char_u *theline = NULL;
int success = FALSE;
for (;;)
{
vim_free(theline);
theline = eap->ea_getline(':', eap->cookie, 0, GETLINE_CONCAT_ALL);
if (theline == NULL)
break;
char_u *line = skipwhite(theline);
// Skip empty and comment lines.
if (*line == NUL)
continue;
if (*line == '#')
{
if (vim9_bad_comment(line))
break;
continue;
}
char_u *p = line;
char *end_name;
int shortlen;
int fullen;
if (is_class)
{
end_name = "endclass";
shortlen = 4;
fullen = 8;
}
else if (is_enum)
{
end_name = "endenum";
shortlen = 4;
fullen = 7;
}
else
{
end_name = "endinterface";
shortlen = 5;
fullen = 12;
}
if (checkforcmd(&p, end_name, shortlen))
{
if (STRNCMP(line, end_name, fullen) != 0)
semsg(_(e_command_cannot_be_shortened_str), line);
else if (*p == '|' || !ends_excmd2(line, p))
semsg(_(e_trailing_characters_str), p);
else
success = TRUE;
break;
}
int wrong_endname = FALSE;
if (is_class)
wrong_endname = checkforcmd(&p, "endinterface", 5)
|| checkforcmd(&p, "endenum", 4);
else if (is_enum)
wrong_endname = checkforcmd(&p, "endclass", 4)
|| checkforcmd(&p, "endinterface", 5);
else
wrong_endname = checkforcmd(&p, "endclass", 4)
|| checkforcmd(&p, "endenum", 4);
if (wrong_endname)
{
semsg(_(e_invalid_command_str_expected_str), line, end_name);
break;
}
if (is_enum && !enum_end)
{
// In an enum, all the enumerated values are at the beginning
// separated by comma. The class and object variables/methods
// follow the values.
if (enum_parse_values(eap, cl, line, &classmembers,
&num_enum_values, &enum_end) == FAIL)
break;
if (enum_end)
// Add the enum "values" class variable.
enum_add_values_member(cl, &classmembers, num_enum_values,
&type_list);
continue;
}
int has_public = FALSE;
if (checkforcmd(&p, "public", 3))
{
if (STRNCMP(line, "public", 6) != 0)
{
semsg(_(e_command_cannot_be_shortened_str), line);
break;
}
if (is_interface)
{
emsg(_(e_public_variable_not_supported_in_interface));
break;
}
has_public = TRUE;
p = skipwhite(line + 6);
if (STRNCMP(p, "def", 3) == 0)
{
emsg(_(e_public_keyword_not_supported_for_method));
break;
}
if (STRNCMP(p, "var", 3) != 0 && STRNCMP(p, "static", 6) != 0
&& STRNCMP(p, "final", 5) != 0 && STRNCMP(p, "const", 5) != 0)
{
emsg(_(e_public_must_be_followed_by_var_static_final_or_const));
break;
}
}
int abstract_method = FALSE;
char_u *pa = p;
if (checkforcmd(&p, "abstract", 3))
{
if (STRNCMP(pa, "abstract", 8) != 0)
{
semsg(_(e_command_cannot_be_shortened_str), pa);
break;
}
if (is_enum)
{
// "abstract" not supported in an enum
emsg(_(e_abstract_cannot_be_used_in_enum));
break;
}
if (is_interface)
{
// "abstract" not supported in an interface
emsg(_(e_abstract_cannot_be_used_in_interface));
break;
}
if (!is_abstract)
{
semsg(_(e_abstract_method_in_concrete_class), pa);
break;
}
p = skipwhite(pa + 8);
if (STRNCMP(p, "def", 3) != 0)
{
emsg(_(e_abstract_must_be_followed_by_def));
break;
}
abstract_method = TRUE;
}
int has_static = FALSE;
char_u *ps = p;
if (checkforcmd(&p, "static", 4))
{
if (STRNCMP(ps, "static", 6) != 0)
{
semsg(_(e_command_cannot_be_shortened_str), ps);
break;
}
if (is_interface)
{
emsg(_(e_static_member_not_supported_in_interface));
break;
}
has_static = TRUE;
p = skipwhite(ps + 6);
if (STRNCMP(p, "var", 3) != 0 && STRNCMP(p, "def", 3) != 0
&& STRNCMP(p, "final", 5) != 0 && STRNCMP(p, "const", 5) != 0)
{
emsg(_(e_static_must_be_followed_by_var_def_final_or_const));
break;
}
}
int has_final = FALSE;
int has_var = FALSE;
int has_const = FALSE;
if (checkforcmd(&p, "var", 3))
has_var = TRUE;
else if (checkforcmd(&p, "final", 5))
{
if (is_interface)
{
emsg(_(e_final_variable_not_supported_in_interface));
break;
}
has_final = TRUE;
}
else if (checkforcmd(&p, "const", 5))
{
if (is_interface)
{
emsg(_(e_const_variable_not_supported_in_interface));
break;
}
has_const = TRUE;
}
p = skipwhite(p);
// object members (public, read access, private):
// "var _varname"
// "var varname"
// "public var varname"
// "final _varname"
// "final varname"
// "public final varname"
// "const _varname"
// "const varname"
// "public const varname"
// class members (public, read access, private):
// "static var _varname"
// "static var varname"
// "public static var varname"
// "static final _varname"
// "static final varname"
// "public static final varname"
// "static const _varname"
// "static const varname"
// "public static const varname"
if (has_var || has_final || has_const)
{
char_u *varname = p;
char_u *varname_end = NULL;
type_T *type = NULL;
char_u *init_expr = NULL;
int has_type = FALSE;
if (!eval_isnamec1(*p))
{
if (has_static)
semsg(_(e_invalid_class_variable_declaration_str), line);
else
semsg(_(e_invalid_object_variable_declaration_str), line);
break;
}
if (is_interface && *varname == '_')
{
// private variables are not supported in an interface
semsg(_(e_protected_variable_not_supported_in_interface),
varname);
break;
}
if (parse_member(eap, line, varname, has_public,
&varname_end, &has_type, &type_list, &type,
!is_interface ? &init_expr: NULL) == FAIL)
break;
if (is_reserved_varname(varname, varname_end)
|| is_duplicate_variable(&classmembers, &objmembers,
varname, varname_end))
{
vim_free(init_expr);
break;
}
if (add_member(has_static ? &classmembers : &objmembers, varname,
varname_end, has_public, has_final, has_const,
has_type, type, init_expr) == FAIL)
{
vim_free(init_expr);
break;
}
}
// constructors:
// def new()
// enddef
// def newOther()
// enddef
// object methods and class functions:
// def SomeMethod()
// enddef
// static def ClassFunction()
// enddef
// TODO:
// def <Tval> someMethod()
// enddef
else if (checkforcmd(&p, "def", 3))
{
exarg_T ea;
garray_T lines_to_free;
int is_new = STRNCMP(p, "new", 3) == 0
|| STRNCMP(p, "_new", 4) == 0;
if (has_public)
{
// "public" keyword is not supported when defining an object or
// class method
emsg(_(e_public_keyword_not_supported_for_method));
break;
}
if (*p == NUL)
{
// No method name following def
semsg(_(e_not_valid_command_in_class_str), line);
break;
}
if (is_interface && *p == '_')
{
// private methods are not supported in an interface
semsg(_(e_protected_method_not_supported_in_interface), p);
break;
}
if (has_static && !is_new && SAFE_islower(*p) &&
is_valid_builtin_obj_methodname(p))
{
semsg(_(e_builtin_class_method_not_supported), p);
break;
}
CLEAR_FIELD(ea);
ea.cmd = line;
ea.arg = p;
ea.cmdidx = CMD_def;
ea.ea_getline = eap->ea_getline;
ea.cookie = eap->cookie;
ga_init2(&lines_to_free, sizeof(char_u *), 50);
int class_flags;
if (is_interface)
class_flags = CF_INTERFACE;
else
class_flags = abstract_method ? CF_ABSTRACT_METHOD : CF_CLASS;
ufunc_T *uf = define_function(&ea, NULL, &lines_to_free,
class_flags, objmembers.ga_data, objmembers.ga_len);
ga_clear_strings(&lines_to_free);
if (uf != NULL)
{
char_u *name = uf->uf_name;
if (is_new && !is_valid_constructor(uf, is_abstract,
has_static))
{
// private variables are not supported in an interface
semsg(_(e_protected_method_not_supported_in_interface),
name);
func_clear_free(uf, FALSE);
break;
}
// check for builtin method
if (!is_new && SAFE_islower(*name) &&
!object_check_builtin_method_sig(uf))
{
func_clear_free(uf, FALSE);
break;
}
// Check the name isn't used already.
if (is_duplicate_method(&classfunctions, &objmethods, name))
{
success = FALSE;
func_clear_free(uf, FALSE);
break;
}
garray_T *fgap = has_static || is_new
? &classfunctions : &objmethods;
if (ga_grow(fgap, 1) == OK)
{
if (is_new)
uf->uf_flags |= FC_NEW;
if (abstract_method)
uf->uf_flags |= FC_ABSTRACT;
((ufunc_T **)fgap->ga_data)[fgap->ga_len] = uf;
++fgap->ga_len;
}
}
}
else
{
if (is_class)
semsg(_(e_not_valid_command_in_class_str), line);
else if (is_enum)
semsg(_(e_not_valid_command_in_enum_str), line);
else
semsg(_(e_not_valid_command_in_interface_str), line);
break;
}
}
if (theline == NULL && !success && is_enum)
emsg(_(e_missing_endenum));
vim_free(theline);
if (success && is_enum && num_enum_values == 0)
// Empty enum statement. Add an empty "values" class variable
success = enum_add_values_member(cl, &classmembers, 0, &type_list);
/*
* Check a few things
*/
// Check the "extends" class is valid.
if (success && extends != NULL)
success = validate_extends_class(cl, extends, &extends_cl, is_class);
VIM_CLEAR(extends);
// Check the new object methods to make sure their access (public or
// private) is the same as that in the extended class lineage.
if (success && extends_cl != NULL)
success = validate_extends_methods(&objmethods, extends_cl);
// Check the new class and object variables are not duplicates of the
// variables in the extended class lineage. If an interface is extending
// another interface, then it can duplicate the member variables.
if (success && extends_cl != NULL)
{
if (is_class)
success = extends_check_dup_members(&objmembers, extends_cl);
else
success = extends_check_intf_var_type(&objmembers, extends_cl);
}
// When extending an abstract class, make sure all the abstract methods in
// the parent class are implemented. If the current class is an abstract
// class, then there is no need for this check.
if (success && !is_abstract && extends_cl != NULL
&& (extends_cl->class_flags & CLASS_ABSTRACT))
success = validate_abstract_class_methods(&classfunctions,
&objmethods, extends_cl);
// Process the "implements" entries
// Check all "implements" entries are valid.
garray_T intf_classes_ga;
ga_init2(&intf_classes_ga, sizeof(class_T *), 5);
if (success && ga_impl.ga_len > 0)
success = validate_implements_classes(&ga_impl, &intf_classes_ga,
&objmethods, &objmembers, extends_cl);
// inherit the super class interfaces
if (success && extends_cl != NULL)
success = add_super_class_interfaces(extends_cl, &ga_impl,
&intf_classes_ga);
intf_classes = intf_classes_ga.ga_data;
intf_classes_ga.ga_len = 0;
// Check no function argument name is used as a class member.
if (success)
success = check_func_arg_names(&classfunctions, &objmethods,
&classmembers);
if (success)
{
// "endclass" or "endinterface" or "endenum" encountered without any
// failures
if (extends_cl != NULL)
{
cl->class_extends = extends_cl;
extends_cl->class_flags |= CLASS_EXTENDED;
}
// Add class and object variables to "cl".
if (add_members_to_class(&classmembers,
NULL,
0,
&cl->class_class_members,
&cl->class_class_member_count) == FAIL
|| add_members_to_class(&objmembers,
extends_cl == NULL ? NULL
: extends_cl->class_obj_members,
extends_cl == NULL ? 0
: extends_cl->class_obj_member_count,
&cl->class_obj_members,
&cl->class_obj_member_count) == FAIL)
goto cleanup;
if (ga_impl.ga_len > 0)
{
// Move the "implements" names into the class.
cl->class_interface_count = ga_impl.ga_len;
cl->class_interfaces = ALLOC_MULT(char_u *, ga_impl.ga_len);
if (cl->class_interfaces == NULL)
goto cleanup;
for (int i = 0; i < ga_impl.ga_len; ++i)
cl->class_interfaces[i] = ((char_u **)ga_impl.ga_data)[i];
VIM_CLEAR(ga_impl.ga_data);
ga_impl.ga_len = 0;
cl->class_interfaces_cl = intf_classes;
intf_classes = NULL;
}
if (cl->class_interface_count > 0 || extends_cl != NULL)
{
// Add a method and member lookup table to each of the interface
// classes.
if (add_lookup_tables(cl, extends_cl, &objmethods) == FAIL)
goto cleanup;
}
int have_new = FALSE;
ufunc_T *class_func = NULL;
for (int i = 0; i < classfunctions.ga_len; ++i)
{
class_func = ((ufunc_T **)classfunctions.ga_data)[i];
if (STRCMP(class_func->uf_name, "new") == 0
|| STRCMP(class_func->uf_name, "_new") == 0)
{
have_new = TRUE;
break;
}
}
if (have_new)
// The return type of new() is an object of class "cl"
class_func->uf_ret_type->tt_class = cl;
else if ((is_class || is_enum) && !is_abstract && !have_new)
// No new() method was defined, add the default constructor.
add_default_constructor(cl, &classfunctions, &type_list);
// Move all the functions into the created class.
if (add_classfuncs_objmethods(cl, extends_cl, &classfunctions,
&objmethods) == FAIL)
goto cleanup;
update_builtin_method_index(cl);
class_created(cl);
// Allocate a typval for each class member and initialize it.
if ((is_class || is_enum) && cl->class_class_member_count > 0)
if (add_class_members(cl, eap, &type_list) == FAIL)
goto cleanup;
cl->class_type_list = type_list;
if (is_enum)
{
// clear the constructor method names, so that an enum class cannot
// be instantiated
enum_clear_constructors(cl);
}
// TODO:
// - Fill hashtab with object members and methods ?
return;
}
cleanup:
vim_free(extends);
class_unref(extends_cl);
if (intf_classes != NULL)
{
for (int i = 0; i < ga_impl.ga_len; ++i)
class_unref(intf_classes[i]);
vim_free(intf_classes);
}
ga_clear_strings(&ga_impl);
for (int round = 1; round <= 2; ++round)
{
garray_T *gap = round == 1 ? &classmembers : &objmembers;
if (gap->ga_len == 0 || gap->ga_data == NULL)
continue;
for (int i = 0; i < gap->ga_len; ++i)
{
ocmember_T *m = ((ocmember_T *)gap->ga_data) + i;
vim_free(m->ocm_name);
vim_free(m->ocm_init);
}
ga_clear(gap);
}
for (int i = 0; i < objmethods.ga_len; ++i)
{
ufunc_T *uf = ((ufunc_T **)objmethods.ga_data)[i];
func_clear_free(uf, FALSE);
}
ga_clear(&objmethods);
for (int i = 0; i < classfunctions.ga_len; ++i)
{
ufunc_T *uf = ((ufunc_T **)classfunctions.ga_data)[i];
func_clear_free(uf, FALSE);
}
ga_clear(&classfunctions);
clear_type_list(&type_list);
}
/*
* Find member "name" in class "cl", set "member_idx" to the member index and
* return its type.
* When "is_object" is TRUE, then look for object members. Otherwise look for
* class members.
* When not found "member_idx" is set to -1 and t_any is returned.
* Set *p_m ocmmember_T if not NULL
*/
type_T *
oc_member_type(
class_T *cl,
int is_object,
char_u *name,
char_u *name_end,
int *member_idx)
{
size_t len = name_end - name;
ocmember_T *m;
*member_idx = -1; // not found (yet)
m = member_lookup(cl, is_object ? VAR_OBJECT : VAR_CLASS, name, len,
member_idx);
if (m == NULL)
{
member_not_found_msg(cl, is_object ? VAR_OBJECT : VAR_CLASS, name,
len);
return &t_any;
}
return m->ocm_type;
}
/*
* Given a class or object variable index, return the variable type
*/
type_T *
oc_member_type_by_idx(
class_T *cl,
int is_object,
int member_idx)
{
ocmember_T *m;
int member_count;
if (is_object)
{
m = cl->class_obj_members;
member_count = cl->class_obj_member_count;
}
else
{
m = cl->class_class_members;
member_count = cl->class_class_member_count;
}
if (member_idx >= member_count)
return NULL;
return m[member_idx].ocm_type;
}
/*
* Type aliases (:type)
*/
static void
typealias_free(typealias_T *ta)
{
// ta->ta_type is freed in clear_type_list()
vim_free(ta->ta_name);
vim_free(ta);
}
void
typealias_unref(typealias_T *ta)
{
if (ta != NULL && --ta->ta_refcount <= 0)
typealias_free(ta);
}
/*
* Handle ":type". Create an alias for a type specification.
*/
void
ex_type(exarg_T *eap)
{
char_u *arg = eap->arg;
if (!current_script_is_vim9()
|| (cmdmod.cmod_flags & CMOD_LEGACY)
|| !getline_equal(eap->ea_getline, eap->cookie, getsourceline))
{
emsg(_(e_type_can_only_be_defined_in_vim9_script));
return;
}
if (*arg == NUL)
{
emsg(_(e_missing_typealias_name));
return;
}
if (!ASCII_ISUPPER(*arg))
{
semsg(_(e_type_name_must_start_with_uppercase_letter_str), arg);
return;
}
char_u *name_end = find_name_end(arg, NULL, NULL, FNE_CHECK_START);
if (!IS_WHITE_OR_NUL(*name_end))
{
semsg(_(e_white_space_required_after_name_str), arg);
return;
}
char_u *name_start = arg;
arg = skipwhite(name_end);
if (*arg != '=')
{
semsg(_(e_missing_equal_str), arg);
return;
}
if (!IS_WHITE_OR_NUL(*(arg + 1)))
{
semsg(_(e_white_space_required_after_str_str), "=", arg);
return;
}
arg++;
arg = skipwhite(arg);
if (*arg == NUL)
{
emsg(_(e_missing_typealias_type));
return;
}
scriptitem_T *si = SCRIPT_ITEM(current_sctx.sc_sid);
type_T *type = parse_type(&arg, &si->sn_type_list, TRUE);
if (type == NULL)
return;
if (*arg != NUL)
{
// some text after the type
semsg(_(e_trailing_characters_str), arg);
return;
}
int cc = *name_end;
*name_end = NUL;
typval_T tv;
tv.v_type = VAR_UNKNOWN;
if (eval_variable_import(name_start, &tv) == OK)
{
if (tv.v_type == VAR_TYPEALIAS)
semsg(_(e_typealias_already_exists_for_str), name_start);
else
semsg(_(e_redefining_script_item_str), name_start);
clear_tv(&tv);
goto done;
}
// Create a script-local variable for the type alias.
if (type->tt_type != VAR_OBJECT)
{
tv.v_type = VAR_TYPEALIAS;
tv.v_lock = 0;
tv.vval.v_typealias = ALLOC_CLEAR_ONE(typealias_T);
++tv.vval.v_typealias->ta_refcount;
tv.vval.v_typealias->ta_name = vim_strsave(name_start);
tv.vval.v_typealias->ta_type = type;
}
else
{
// When creating a type alias for a class, use the class type itself to
// create the type alias variable. This is needed to use the type
// alias to invoke class methods (e.g. new()) and use class variables.
tv.v_type = VAR_CLASS;
tv.v_lock = 0;
tv.vval.v_class = type->tt_class;
++tv.vval.v_class->class_refcount;
}
set_var_const(name_start, current_sctx.sc_sid, NULL, &tv, FALSE,
ASSIGN_CONST | ASSIGN_FINAL, 0);
done:
*name_end = cc;
}
/*
* Returns OK if a member variable named "name" is present in the class "cl".
* Otherwise returns FAIL. If found, the member variable typval is set in
* "rettv". If "is_object" is TRUE, then the object member variable table is
* searched. Otherwise the class member variable table is searched.
*/
int
get_member_tv(
class_T *cl,
int is_object,
char_u *name,
size_t namelen,
class_T *current_class,
typval_T *rettv)
{
ocmember_T *m;
int m_idx;
m = member_lookup(cl, is_object ? VAR_OBJECT : VAR_CLASS, name, namelen,
&m_idx);
if (m == NULL)
return FAIL;
if (*name == '_' && (current_class == NULL ||
!class_instance_of(current_class, cl)))
{
emsg_var_cl_define(e_cannot_access_protected_variable_str,
m->ocm_name, 0, cl);
return FAIL;
}
if (is_object)
{
// The object only contains a pointer to the class, the member values
// array follows right after that.
object_T *obj = rettv->vval.v_object;
typval_T *tv = (typval_T *)(obj + 1) + m_idx;
copy_tv(tv, rettv);
object_unref(obj);
}
else
{
copy_tv(&cl->class_members_tv[m_idx], rettv);
class_unref(cl);
}
return OK;
}
/*
* Call an object or class method "name" in class "cl". The method return
* value is returned in "rettv".
*/
static int
call_oc_method(
class_T *cl,
char_u *name,
size_t len,
char_u *name_end,
evalarg_T *evalarg,
char_u **arg,
typval_T *rettv)
{
ufunc_T *fp;
typval_T argvars[MAX_FUNC_ARGS + 1];
int argcount = 0;
ocmember_T *ocm = NULL;
int m_idx;
fp = method_lookup(cl, rettv->v_type, name, len, NULL);
if (fp == NULL)
{
// could be an object or class funcref variable
ocm = member_lookup(cl, rettv->v_type, name, len, &m_idx);
if (ocm == NULL || ocm->ocm_type->tt_type != VAR_FUNC)
{
method_not_found_msg(cl, rettv->v_type, name, len);
return FAIL;
}
if (*name == '_')
{
// Protected object or class funcref variable
semsg(_(e_cannot_access_protected_variable_str), ocm->ocm_name,
cl->class_name);
return FAIL;
}
if (rettv->v_type == VAR_OBJECT)
{
// funcref object variable
object_T *obj = rettv->vval.v_object;
typval_T *tv = (typval_T *)(obj + 1) + m_idx;
copy_tv(tv, rettv);
}
else
// funcref class variable
copy_tv(&cl->class_members_tv[m_idx], rettv);
*arg = name_end;
return OK;
}
if (ocm == NULL && *fp->uf_name == '_')
{
// Cannot access a protected method outside of a class
semsg(_(e_cannot_access_protected_method_str), fp->uf_name);
return FAIL;
}
char_u *argp = name_end;
int ret = get_func_arguments(&argp, evalarg, 0, argvars, &argcount, FALSE);
if (ret == FAIL)
return FAIL;
funcexe_T funcexe;
CLEAR_FIELD(funcexe);
funcexe.fe_evaluate = TRUE;
if (rettv->v_type == VAR_OBJECT)
{
funcexe.fe_object = rettv->vval.v_object;
++funcexe.fe_object->obj_refcount;
}
// Clear the class or object after calling the function, in
// case the refcount is one.
typval_T tv_tofree = *rettv;
rettv->v_type = VAR_UNKNOWN;
// Call the user function. Result goes into rettv;
int error = call_user_func_check(fp, argcount, argvars, rettv, &funcexe,
NULL);
// Clear the previous rettv and the arguments.
clear_tv(&tv_tofree);
for (int idx = 0; idx < argcount; ++idx)
clear_tv(&argvars[idx]);
if (error != FCERR_NONE)
{
user_func_error(error, printable_func_name(fp), funcexe.fe_found_var);
return FAIL;
}
*arg = argp;
return OK;
}
/*
* Create a partial typval for "obj.obj_method" and store it in "rettv".
* Returns OK on success and FAIL on memory allocation failure.
*/
int
obj_method_to_partial_tv(object_T *obj, ufunc_T *obj_method, typval_T *rettv)
{
partial_T *pt = ALLOC_CLEAR_ONE(partial_T);
if (pt == NULL)
return FAIL;
pt->pt_refcount = 1;
if (obj != NULL)
{
pt->pt_obj = obj;
++pt->pt_obj->obj_refcount;
}
pt->pt_auto = TRUE;
pt->pt_func = obj_method;
func_ptr_ref(pt->pt_func);
rettv->v_type = VAR_PARTIAL;
rettv->vval.v_partial = pt;
return OK;
}
/*
* Evaluate what comes after a class:
* - class member: SomeClass.varname
* - class function: SomeClass.SomeMethod()
* - class constructor: SomeClass.new()
* - object member: someObject.varname
* - object method: someObject.SomeMethod()
*
* "*arg" points to the '.'.
* "*arg" is advanced to after the member name or method call.
*
* Returns FAIL or OK.
*/
int
class_object_index(
char_u **arg,
typval_T *rettv,
evalarg_T *evalarg,
int verbose UNUSED) // give error messages
{
if (VIM_ISWHITE((*arg)[1]))
{
semsg(_(e_no_white_space_allowed_after_str_str), ".", *arg);
return FAIL;
}
++*arg;
char_u *name = *arg;
char_u *name_end = find_name_end(name, NULL, NULL, FNE_CHECK_START);
if (name_end == name)
return FAIL;
size_t len = name_end - name;
int did_emsg_save = did_emsg;
class_T *cl;
if (rettv->v_type == VAR_CLASS)
cl = rettv->vval.v_class;
else // VAR_OBJECT
{
if (rettv->vval.v_object == NULL)
{
emsg(_(e_using_null_object));
return FAIL;
}
cl = rettv->vval.v_object->obj_class;
}
if (cl == NULL)
{
emsg(_(e_incomplete_type));
return FAIL;
}
if (*name_end == '(')
// Invoke the class or object method
return call_oc_method(cl, name, len, name_end, evalarg, arg, rettv);
else if (rettv->v_type == VAR_OBJECT || rettv->v_type == VAR_CLASS)
{
// Search in the object member variable table and the class member
// variable table.
int is_object = rettv->v_type == VAR_OBJECT;
if (get_member_tv(cl, is_object, name, len, NULL, rettv) == OK)
{
*arg = name_end;
return OK;
}
// could be a class method or an object method
int fidx;
ufunc_T *fp = method_lookup(cl, rettv->v_type, name, len, &fidx);
if (fp != NULL)
{
// Protected methods are not accessible outside the class
if (*name == '_')
{
semsg(_(e_cannot_access_protected_method_str), fp->uf_name);
return FAIL;
}
if (obj_method_to_partial_tv(is_object ? rettv->vval.v_object :
NULL, fp, rettv) == FAIL)
return FAIL;
*arg = name_end;
return OK;
}
if (did_emsg == did_emsg_save)
member_not_found_msg(cl, rettv->v_type, name, len);
}
return FAIL;
}
/*
* If "arg" points to a class or object method, return it.
* Otherwise return NULL.
*/
ufunc_T *
find_class_func(char_u **arg)
{
char_u *name = *arg;
char_u *name_end = find_name_end(name, NULL, NULL, FNE_CHECK_START);
if (name_end == name || *name_end != '.')
return NULL;
ufunc_T *fp = NULL;
size_t len = name_end - name;
typval_T tv;
tv.v_type = VAR_UNKNOWN;
if (eval_variable(name, (int)len,
0, &tv, NULL, EVAL_VAR_NOAUTOLOAD) == FAIL)
return NULL;
if (tv.v_type != VAR_CLASS && tv.v_type != VAR_OBJECT)
goto fail_after_eval;
class_T *cl = tv.v_type == VAR_CLASS ? tv.vval.v_class
: tv.vval.v_object->obj_class;
if (cl == NULL)
goto fail_after_eval;
char_u *fname = name_end + 1;
char_u *fname_end = find_name_end(fname, NULL, NULL, FNE_CHECK_START);
if (fname_end == fname)
goto fail_after_eval;
len = fname_end - fname;
fp = method_lookup(cl, tv.v_type, fname, len, NULL);
fail_after_eval:
clear_tv(&tv);
return fp;
}
/*
* Returns the index of class variable "name" in the class "cl".
* Returns -1, if the variable is not found.
* If "namelen" is zero, then it is assumed that "name" is NUL terminated.
*/
int
class_member_idx(class_T *cl, char_u *name, size_t namelen)
{
int idx;
class_member_lookup(cl, name, namelen, &idx);
return idx;
}
/*
* Returns a pointer to the class member variable "name" in the class "cl".
* Returns NULL if the variable is not found.
* The member variable index is set in "idx".
*/
ocmember_T *
class_member_lookup(class_T *cl, char_u *name, size_t namelen, int *idx)
{
ocmember_T *ret_m = NULL;
int ret_idx = -1;
for (int i = 0; i < cl->class_class_member_count; ++i)
{
ocmember_T *m = &cl->class_class_members[i];
if (namelen)
{
if (STRNCMP(name, m->ocm_name, namelen) == 0
&& m->ocm_name[namelen] == NUL)
{
ret_m = m;
ret_idx = i;
break;
}
}
else if (STRCMP(name, m->ocm_name) == 0)
{
ret_m = m;
ret_idx = i;
break;
}
}
if (idx != NULL)
*idx = ret_idx;
return ret_m;
}
/*
* Returns a pointer to the class method "name" in class "cl".
* Returns NULL if the method is not found.
* The method index is set in "idx".
*/
static ufunc_T *
class_method_lookup(class_T *cl, char_u *name, size_t namelen, int *idx)
{
ufunc_T *ret_fp = NULL;
int ret_idx = -1;
for (int i = 0; i < cl->class_class_function_count; ++i)
{
ufunc_T *fp = cl->class_class_functions[i];
char_u *ufname = (char_u *)fp->uf_name;
if (STRNCMP(name, ufname, namelen) == 0 && ufname[namelen] == NUL)
{
ret_fp = fp;
ret_idx = i;
break;
}
}
if (idx != NULL)
*idx = ret_idx;
return ret_fp;
}
/*
* Returns the index of class method "name" in the class "cl".
* Returns -1, if the method is not found.
*/
int
class_method_idx(class_T *cl, char_u *name, size_t namelen)
{
int idx;
class_method_lookup(cl, name, namelen, &idx);
return idx;
}
/*
* Returns the index of object member variable "name" in the class "cl".
* Returns -1, if the variable is not found.
* If "namelen" is zero, then it is assumed that "name" is NUL terminated.
*/
static int
object_member_idx(class_T *cl, char_u *name, size_t namelen)
{
int idx;
object_member_lookup(cl, name, namelen, &idx);
return idx;
}
/*
* Returns a pointer to the object member variable "name" in the class "cl".
* Returns NULL if the variable is not found.
* The object member variable index is set in "idx".
*/
ocmember_T *
object_member_lookup(class_T *cl, char_u *name, size_t namelen, int *idx)
{
ocmember_T *ret_m = NULL;
int ret_idx = -1;
for (int i = 0; i < cl->class_obj_member_count; ++i)
{
ocmember_T *m = &cl->class_obj_members[i];
if (namelen)
{
if (STRNCMP(name, m->ocm_name, namelen) == 0
&& m->ocm_name[namelen] == NUL)
{
ret_m = m;
ret_idx = i;
break;
}
}
else if (STRCMP(name, m->ocm_name) == 0)
{
ret_m = m;
ret_idx = i;
break;
}
}
if (idx != NULL)
*idx = ret_idx;
return ret_m;
}
/*
* Returns a pointer to the object method "name" in class "cl".
* Returns NULL if the method is not found.
* The object method index is set in "idx".
*/
static ufunc_T *
object_method_lookup(class_T *cl, char_u *name, size_t namelen, int *idx)
{
ufunc_T *ret_fp = NULL;
int ret_idx = -1;
for (int i = 0; i < cl->class_obj_method_count; ++i)
{
ufunc_T *fp = cl->class_obj_methods[i];
// Use a separate pointer to avoid that ASAN complains about
// uf_name[] only being 4 characters.
char_u *ufname = (char_u *)fp->uf_name;
if (STRNCMP(name, ufname, namelen) == 0 && ufname[namelen] == NUL)
{
ret_fp = fp;
ret_idx = i;
break;
}
}
if (idx != NULL)
*idx = ret_idx;
return ret_fp;
}
/*
* Returns the index of object method "name" in the class "cl".
* Returns -1, if the method is not found.
*/
int
object_method_idx(class_T *cl, char_u *name, size_t namelen)
{
int idx;
object_method_lookup(cl, name, namelen, &idx);
return idx;
}
/*
* Lookup a class or object member variable by name. If v_type is VAR_CLASS,
* then lookup a class member variable and if it is VAR_OBJECT, then lookup a
* object member variable.
*
* Returns a pointer to the member variable structure if variable is found.
* Otherwise returns NULL. The member variable index is set in "*idx".
*/
ocmember_T *
member_lookup(
class_T *cl,
vartype_T v_type,
char_u *name,
size_t namelen,
int *idx)
{
if (v_type == VAR_CLASS)
return class_member_lookup(cl, name, namelen, idx);
else
return object_member_lookup(cl, name, namelen, idx);
}
/*
* Find the class that defines the named member. Look up the hierarchy
* starting at "cl".
*
* Return the class that defines the member "name", else NULL.
* Fill in "p_m", if specified, for ocmember_T in found class.
*/
// NOTE: if useful for something could also indirectly return vartype and idx.
static class_T *
class_defining_member(class_T *cl, char_u *name, size_t len, ocmember_T **p_m)
{
class_T *cl_found = NULL;
vartype_T vartype = VAR_UNKNOWN;
ocmember_T *m_found = NULL;
len = len != 0 ? len : STRLEN(name);
// Loop assumes if member is not defined in "cl", then it is not
// defined in any super class; the last class where it's found is the
// class where it is defined. Once the vartype is found, the other
// type is no longer checked.
for (class_T *super = cl; super != NULL; super = super->class_extends)
{
class_T *cl_tmp = NULL;
ocmember_T *m = NULL;
if (vartype == VAR_UNKNOWN || vartype == VAR_OBJECT)
{
if ((m = object_member_lookup(super, name, len, NULL)) != NULL)
{
cl_tmp = super;
vartype = VAR_OBJECT;
}
}
if (vartype == VAR_UNKNOWN || vartype == VAR_CLASS)
{
if (( m = class_member_lookup(super, name, len, NULL)) != NULL)
{
cl_tmp = super;
vartype = VAR_CLASS;
}
}
if (cl_tmp == NULL)
break; // member is not in this or any super class.
cl_found = cl_tmp;
m_found = m;
}
if (p_m != NULL)
*p_m = m_found;
return cl_found;
}
/*
* Lookup a class or object method by name. If v_type is VAR_CLASS, then
* lookup a class method and if it is VAR_OBJECT, then lookup a object method.
*
* Returns a pointer to the method structure if variable is found.
* Otherwise returns NULL. The method variable index is set in "*idx".
*/
ufunc_T *
method_lookup(
class_T *cl,
vartype_T v_type,
char_u *name,
size_t namelen,
int *idx)
{
if (v_type == VAR_CLASS)
return class_method_lookup(cl, name, namelen, idx);
else
return object_method_lookup(cl, name, namelen, idx);
}
/*
* Return TRUE if current context "cctx_arg" is inside class "cl".
* Return FALSE if not.
*/
int
inside_class(cctx_T *cctx_arg, class_T *cl)
{
for (cctx_T *cctx = cctx_arg; cctx != NULL; cctx = cctx->ctx_outer)
if (cctx->ctx_ufunc != NULL
&& class_instance_of(cctx->ctx_ufunc->uf_class, cl))
return TRUE;
return FALSE;
}
/*
* Return TRUE if object/class variable "m" is read-only.
* Also give an error message.
*/
int
oc_var_check_ro(class_T *cl, ocmember_T *m)
{
if (m->ocm_flags & (OCMFLAG_FINAL | OCMFLAG_CONST))
{
semsg(_(e_cannot_change_readonly_variable_str_in_class_str),
m->ocm_name, cl->class_name);
return TRUE;
}
return FALSE;
}
/*
* Lock all the constant object variables. Called after creating and
* initializing a new object.
*/
void
obj_lock_const_vars(object_T *obj)
{
for (int i = 0; i < obj->obj_class->class_obj_member_count; i++)
{
ocmember_T *ocm = &obj->obj_class->class_obj_members[i];
if (ocm->ocm_flags & OCMFLAG_CONST)
{
typval_T *mtv = ((typval_T *)(obj + 1)) + i;
item_lock(mtv, DICT_MAXNEST, TRUE, TRUE);
}
}
}
/*
* Make a copy of an object.
*/
void
copy_object(typval_T *from, typval_T *to)
{
if (from->vval.v_object == NULL)
to->vval.v_object = NULL;
else
{
to->vval.v_object = from->vval.v_object;
++to->vval.v_object->obj_refcount;
}
}
/*
* Make a copy of a class.
*/
void
copy_class(typval_T *from, typval_T *to)
{
if (from->vval.v_class == NULL)
to->vval.v_class = NULL;
else
{
to->vval.v_class = from->vval.v_class;
++to->vval.v_class->class_refcount;
}
}
/*
* Free the class "cl" and its contents.
*/
static void
class_free(class_T *cl)
{
// Freeing what the class contains may recursively come back here.
// Clear "class_name" first, if it is NULL the class does not need to
// be freed.
VIM_CLEAR(cl->class_name);
class_unref(cl->class_extends);
for (int i = 0; i < cl->class_interface_count; ++i)
{
vim_free(((char_u **)cl->class_interfaces)[i]);
if (cl->class_interfaces_cl[i] != NULL)
class_unref(cl->class_interfaces_cl[i]);
}
vim_free(cl->class_interfaces);
vim_free(cl->class_interfaces_cl);
itf2class_T *next;
for (itf2class_T *i2c = cl->class_itf2class; i2c != NULL; i2c = next)
{
next = i2c->i2c_next;
vim_free(i2c);
}
for (int i = 0; i < cl->class_class_member_count; ++i)
{
ocmember_T *m = &cl->class_class_members[i];
vim_free(m->ocm_name);
vim_free(m->ocm_init);
if (cl->class_members_tv != NULL)
clear_tv(&cl->class_members_tv[i]);
}
vim_free(cl->class_class_members);
vim_free(cl->class_members_tv);
for (int i = 0; i < cl->class_obj_member_count; ++i)
{
ocmember_T *m = &cl->class_obj_members[i];
vim_free(m->ocm_name);
vim_free(m->ocm_init);
}
vim_free(cl->class_obj_members);
for (int i = 0; i < cl->class_class_function_count; ++i)
{
ufunc_T *uf = cl->class_class_functions[i];
func_clear_free(uf, FALSE);
}
vim_free(cl->class_class_functions);
for (int i = 0; i < cl->class_obj_method_count; ++i)
{
ufunc_T *uf = cl->class_obj_methods[i];
func_clear_free(uf, FALSE);
}
vim_free(cl->class_obj_methods);
clear_type_list(&cl->class_type_list);
class_cleared(cl);
vim_free(cl);
}
/*
* Unreference a class. Free it when the reference count goes down to zero.
*/
void
class_unref(class_T *cl)
{
if (cl != NULL && --cl->class_refcount <= 0 && cl->class_name != NULL)
class_free(cl);
}
/*
* Go through the list of all classes and free items without "copyID".
*/
int
class_free_nonref(int copyID)
{
int did_free = FALSE;
for (class_T *cl = first_class; cl != NULL; cl = next_nonref_class)
{
next_nonref_class = cl->class_next_used;
if ((cl->class_copyID & COPYID_MASK) != (copyID & COPYID_MASK))
{
// Free the class and items it contains.
class_free(cl);
did_free = TRUE;
}
}
next_nonref_class = NULL;
return did_free;
}
int
set_ref_in_classes(int copyID)
{
for (class_T *cl = first_class; cl != NULL; cl = cl->class_next_used)
set_ref_in_item_class(cl, copyID, NULL, NULL);
return FALSE;
}
static object_T *first_object = NULL;
/*
* Call this function when an object has been created. It will be added to the
* list headed by "first_object".
*/
void
object_created(object_T *obj)
{
if (first_object != NULL)
{
obj->obj_next_used = first_object;
first_object->obj_prev_used = obj;
}
first_object = obj;
}
/*
* Call this function when an object has been cleared and is about to be freed.
* It is removed from the list headed by "first_object".
*/
static void
object_cleared(object_T *obj)
{
if (obj->obj_next_used != NULL)
obj->obj_next_used->obj_prev_used = obj->obj_prev_used;
if (obj->obj_prev_used != NULL)
obj->obj_prev_used->obj_next_used = obj->obj_next_used;
else if (first_object == obj)
first_object = obj->obj_next_used;
}
/*
* Free the contents of an object ignoring the reference count.
*/
static void
object_free_contents(object_T *obj)
{
class_T *cl = obj->obj_class;
if (!cl)
return;
// Avoid a recursive call, it can happen if "obj" has a circular reference.
obj->obj_refcount = INT_MAX;
// the member values are just after the object structure
typval_T *tv = (typval_T *)(obj + 1);
for (int i = 0; i < cl->class_obj_member_count; ++i)
clear_tv(tv + i);
}
static void
object_free_object(object_T *obj)
{
class_T *cl = obj->obj_class;
if (!cl)
return;
// Remove from the list headed by "first_object".
object_cleared(obj);
vim_free(obj);
class_unref(cl);
}
static void
object_free(object_T *obj)
{
if (in_free_unref_items)
return;
object_free_contents(obj);
object_free_object(obj);
}
/*
* Unreference an object.
*/
void
object_unref(object_T *obj)
{
if (obj != NULL && --obj->obj_refcount <= 0)
object_free(obj);
}
/*
* Go through the list of all objects and free items without "copyID".
*/
int
object_free_nonref(int copyID)
{
int did_free = FALSE;
for (object_T *obj = first_object; obj != NULL; obj = obj->obj_next_used)
{
if ((obj->obj_copyID & COPYID_MASK) != (copyID & COPYID_MASK))
{
// Free the object contents. Object itself will be freed later.
object_free_contents(obj);
did_free = TRUE;
}
}
return did_free;
}
void
object_free_items(int copyID)
{
object_T *obj_next;
for (object_T *obj = first_object; obj != NULL; obj = obj_next)
{
obj_next = obj->obj_next_used;
if ((obj->obj_copyID & COPYID_MASK) != (copyID & COPYID_MASK))
object_free_object(obj);
}
}
/*
* Output message which takes a variable name and the class that defines it.
* "cl" is that class where the name was found. Search "cl"'s hierarchy to
* find the defining class.
*/
void
emsg_var_cl_define(char *msg, char_u *name, size_t len, class_T *cl)
{
ocmember_T *m;
class_T *cl_def = class_defining_member(cl, name, len, &m);
if (cl_def != NULL)
semsg(_(msg), m->ocm_name, cl_def->class_name);
else
emsg(_(e_internal_error_please_report_a_bug));
}
/*
* Echo a class or object method not found message.
*/
void
method_not_found_msg(class_T *cl, vartype_T v_type, char_u *name, size_t len)
{
char_u *method_name = vim_strnsave(name, len);
if ((v_type == VAR_OBJECT)
&& (class_method_idx(cl, name, len) >= 0))
{
// If this is a class method, then give a different error
if (*name == '_')
semsg(_(e_cannot_access_protected_method_str), method_name);
else
semsg(_(e_class_method_str_accessible_only_using_class_str),
method_name, cl->class_name);
}
else if ((v_type == VAR_CLASS)
&& (object_method_idx(cl, name, len) >= 0))
{
// If this is an object method, then give a different error
if (*name == '_')
semsg(_(e_cannot_access_protected_method_str), method_name);
else
semsg(_(e_object_method_str_accessible_only_using_object_str),
method_name, cl->class_name);
}
else
semsg(_(e_method_not_found_on_class_str_str), method_name,
cl->class_name);
vim_free(method_name);
}
/*
* Echo a class or object member not found message.
*/
void
member_not_found_msg(class_T *cl, vartype_T v_type, char_u *name, size_t len)
{
char_u *varname = len ? vim_strnsave(name, len) : vim_strsave(name);
if (v_type == VAR_OBJECT)
{
if (class_member_idx(cl, name, len) >= 0)
semsg(_(e_class_variable_str_accessible_only_using_class_str),
varname, cl->class_name);
else
semsg(_(e_variable_not_found_on_object_str_str), varname,
cl->class_name);
}
else
{
if (object_member_idx(cl, name, len) >= 0)
semsg(_(e_object_variable_str_accessible_only_using_object_str),
varname, cl->class_name);
else
{
if (IS_ENUM(cl))
semsg(_(e_enum_value_str_not_found_in_enum_str),
varname, cl->class_name);
else
semsg(_(e_class_variable_str_not_found_in_class_str),
varname, cl->class_name);
}
}
vim_free(varname);
}
/*
* Compile all the class and object methods in "cl".
*/
void
defcompile_class(class_T *cl)
{
for (int loop = 1; loop <= 2; ++loop)
{
int func_count = loop == 1 ? cl->class_class_function_count
: cl->class_obj_method_count;
for (int i = 0; i < func_count; i++)
{
ufunc_T *ufunc = loop == 1 ? cl->class_class_functions[i]
: cl->class_obj_methods[i];
// Don't compile abstract methods
if (!IS_ABSTRACT_METHOD(ufunc))
defcompile_function(ufunc, cl);
}
}
}
/*
* Compile all the classes defined in the current script
*/
void
defcompile_classes_in_script(void)
{
for (class_T *cl = first_class; cl != NULL; cl = cl->class_next_used)
{
if (eval_variable(cl->class_name, 0, 0, NULL, NULL,
EVAL_VAR_NOAUTOLOAD | EVAL_VAR_NO_FUNC) != FAIL)
defcompile_class(cl);
}
}
/*
* Returns TRUE if "name" is the name of a class. The typval for the class is
* returned in "rettv".
*/
int
is_class_name(char_u *name, typval_T *rettv)
{
rettv->v_type = VAR_UNKNOWN;
if (eval_variable(name, 0, 0, rettv, NULL, EVAL_VAR_NOAUTOLOAD |
EVAL_VAR_NO_FUNC) != FAIL)
return rettv->v_type == VAR_CLASS;
return FALSE;
}
/*
* Calls the object builtin method "name" with arguments "argv". The value
* returned by the builtin method is in "rettv". Returns OK or FAIL.
*/
static int
object_call_builtin_method(
object_T *obj,
class_builtin_T builtin_method,
int argc,
typval_T *argv,
typval_T *rettv)
{
ufunc_T *uf;
int midx;
if (obj == NULL)
return FAIL;
uf = class_get_builtin_method(obj->obj_class, builtin_method, &midx);
if (uf == NULL)
return FAIL;
funccall_T *fc = create_funccal(uf, rettv);
int r;
if (fc == NULL)
return FAIL;
++obj->obj_refcount;
r = call_def_function(uf, argc, argv, 0, NULL, obj, fc, rettv);
remove_funccal();
return r;
}
/*
* Calls the object "empty()" method and returns the method return value. In
* case of an error, returns TRUE.
*/
int
object_empty(object_T *obj)
{
typval_T rettv;
if (object_call_builtin_method(obj, CLASS_BUILTIN_EMPTY, 0, NULL, &rettv)
== FAIL)
return TRUE;
return tv_get_bool(&rettv);
}
/*
* Use the object "len()" method to get an object length. Returns 0 if the
* method is not found or there is an error.
*/
int
object_len(object_T *obj)
{
typval_T rettv;
if (object_call_builtin_method(obj, CLASS_BUILTIN_LEN, 0, NULL, &rettv)
== FAIL)
return 0;
return tv_to_number(&rettv);
}
/*
* Return TRUE when two objects have exactly the same values.
*/
int
object_equal(
object_T *o1,
object_T *o2,
int ic) // ignore case for strings
{
class_T *cl1, *cl2;
if (o1 == o2)
return TRUE;
if (o1 == NULL || o2 == NULL)
return FALSE;
cl1 = o1->obj_class;
cl2 = o2->obj_class;
if (cl1 != cl2 || cl1 == NULL || cl2 == NULL)
return FALSE;
for (int i = 0; i < cl1->class_obj_member_count; ++i)
if (!tv_equal((typval_T *)(o1 + 1) + i, (typval_T *)(o2 + 1) + i, ic))
return FALSE;
return TRUE;
}
/*
* Return a textual representation of object "obj".
* "obj" must not be NULL.
* May return NULL.
*/
char_u *
object2string(
object_T *obj,
char_u *numbuf,
int copyID,
int echo_style,
int restore_copyID,
int composite_val)
{
typval_T rettv;
if (object_call_builtin_method(obj, CLASS_BUILTIN_STRING, 0, NULL, &rettv)
== OK
&& rettv.vval.v_string != NULL)
return rettv.vval.v_string;
int ok = OK;
class_T *cl = obj->obj_class;
garray_T ga;
ga_init2(&ga, 1, 50);
if (cl != NULL && IS_ENUM(cl))
{
ga_concat(&ga, (char_u *)"enum ");
ga_concat(&ga, cl->class_name);
char_u *enum_name = ((typval_T *)(obj + 1))->vval.v_string;
ga_concat(&ga, (char_u *)".");
ga_concat(&ga, enum_name);
}
else
{
ga_concat(&ga, (char_u *)"object of ");
ga_concat(&ga, cl == NULL ? (char_u *)"[unknown]"
: cl->class_name);
}
if (cl != NULL)
{
ga_concat(&ga, (char_u *)" {");
for (int i = 0; i < cl->class_obj_member_count; ++i)
{
if (i > 0)
ga_concat(&ga, (char_u *)", ");
ocmember_T *m = &cl->class_obj_members[i];
ga_concat(&ga, m->ocm_name);
ga_concat(&ga, (char_u *)": ");
char_u *tf = NULL;
char_u *s = echo_string_core((typval_T *)(obj + 1) + i,
&tf, numbuf, copyID, echo_style,
restore_copyID, composite_val);
if (s != NULL)
ga_concat(&ga, s);
vim_free(tf);
if (s == NULL || did_echo_string_emsg)
{
ok = FAIL;
break;
}
line_breakcheck();
}
ga_concat(&ga, (char_u *)"}");
}
if (ok == FAIL)
{
vim_free(ga.ga_data);
return NULL;
}
ga_append(&ga, NUL);
return (char_u *)ga.ga_data;
}
/*
* Return TRUE when the class "cl", its base class or one of the implemented
* interfaces matches the class "other_cl".
*/
int
class_instance_of(class_T *cl, class_T *other_cl)
{
if (cl == other_cl)
return TRUE;
// Recursively check the base classes.
for (; cl != NULL; cl = cl->class_extends)
{
if (cl == other_cl)
return TRUE;
// Check the implemented interfaces and the super interfaces
for (int i = cl->class_interface_count - 1; i >= 0; --i)
{
class_T *intf = cl->class_interfaces_cl[i];
while (intf != NULL)
{
if (intf == other_cl)
return TRUE;
// check the super interfaces
intf = intf->class_extends;
}
}
}
return FALSE;
}
/*
* "instanceof(object, classinfo, ...)" function
*/
void
f_instanceof(typval_T *argvars, typval_T *rettv)
{
typval_T *object_tv = &argvars[0];
typval_T *classinfo_tv = &argvars[1];
class_T *c;
rettv->vval.v_number = VVAL_FALSE;
if (check_for_object_arg(argvars, 0) == FAIL
|| check_for_class_or_typealias_args(argvars, 1) == FAIL)
return;
if (object_tv->vval.v_object == NULL)
return;
for (; classinfo_tv->v_type != VAR_UNKNOWN; ++classinfo_tv)
{
if (classinfo_tv->v_type == VAR_TYPEALIAS)
c = classinfo_tv->vval.v_typealias->ta_type->tt_class;
else
c = classinfo_tv->vval.v_class;
if (class_instance_of(object_tv->vval.v_object->obj_class, c))
{
rettv->vval.v_number = VVAL_TRUE;
return;
}
}
}
#endif // FEAT_EVAL