vim/src/vim9compile.c
Yee Cheng Chin 0b5fe42071
patch 9.1.1169: using global variable for get_insert()/get_lambda_name()
Problem:  using global variable for get_insert()/get_lambda_name()
          (after v9.1.1151)
Solution: let the functions return a string_T object instead
          (Yee Cheng Chin)

In #16720, `get_insert()` was modified to store a string length in a
global variable to be queried immediately by another `get_insert_len()`
function, which is somewhat fragile. Instead, just have the function
itself return a `string_T` object instead. Also do the same for
`get_lambda_name()` which has similar issues.

closes: #16775

Signed-off-by: Yee Cheng Chin <ychin.git@gmail.com>
Signed-off-by: Christian Brabandt <cb@256bit.org>
2025-03-03 20:12:05 +01:00

5147 lines
126 KiB
C

/* vi:set ts=8 sts=4 sw=4 noet:
*
* VIM - Vi IMproved by Bram Moolenaar
*
* Do ":help uganda" in Vim to read copying and usage conditions.
* Do ":help credits" in Vim to see a list of people who contributed.
* See README.txt for an overview of the Vim source code.
*/
/*
* vim9compile.c: compiling a :def function
*/
#define USING_FLOAT_STUFF
#include "vim.h"
#if defined(FEAT_EVAL) || defined(PROTO)
// When not generating protos this is included in proto.h
#ifdef PROTO
# include "vim9.h"
#endif
// Functions defined with :def are stored in this growarray.
// They are never removed, so that they can be found by index.
// Deleted functions have the df_deleted flag set.
garray_T def_functions = {0, 0, sizeof(dfunc_T), 50, NULL};
static void delete_def_function_contents(dfunc_T *dfunc, int mark_deleted);
/*
* Lookup variable "name" in the local scope and return it in "lvar".
* "lvar->lv_from_outer" is incremented accordingly.
* If "lvar" is NULL only check if the variable can be found.
* Return FAIL if not found.
*/
int
lookup_local(char_u *name, size_t len, lvar_T *lvar, cctx_T *cctx)
{
int idx;
lvar_T *lvp;
if (len == 0)
return FAIL;
if (((len == 4 && STRNCMP(name, "this", 4) == 0)
|| (len == 5 && STRNCMP(name, "super", 5) == 0))
&& cctx->ctx_ufunc != NULL
&& (cctx->ctx_ufunc->uf_flags & (FC_OBJECT|FC_NEW)))
{
int is_super = *name == 's';
if (is_super)
{
if (name[5] != '.')
{
emsg(_(e_super_must_be_followed_by_dot));
return FAIL;
}
if (cctx->ctx_ufunc->uf_class != NULL
&& cctx->ctx_ufunc->uf_class->class_extends == NULL)
{
emsg(_(e_using_super_not_in_child_class));
return FAIL;
}
}
if (lvar != NULL)
{
CLEAR_POINTER(lvar);
lvar->lv_loop_depth = -1;
lvar->lv_name = (char_u *)(is_super ? "super" : "this");
if (cctx->ctx_ufunc->uf_class != NULL)
{
lvar->lv_type = &cctx->ctx_ufunc->uf_class->class_object_type;
if (is_super)
{
type_T *type = get_type_ptr(cctx->ctx_type_list);
if (type != NULL)
{
*type = *lvar->lv_type;
lvar->lv_type = type;
type->tt_flags |= TTFLAG_SUPER;
}
}
}
}
return OK;
}
// Find local in current function scope.
for (idx = 0; idx < cctx->ctx_locals.ga_len; ++idx)
{
lvp = ((lvar_T *)cctx->ctx_locals.ga_data) + idx;
if (lvp->lv_name != NULL
&& STRNCMP(name, lvp->lv_name, len) == 0
&& STRLEN(lvp->lv_name) == len)
{
if (lvar != NULL)
{
*lvar = *lvp;
lvar->lv_from_outer = 0;
// If the variable was declared inside a loop set
// lvar->lv_loop_idx and lvar->lv_loop_depth.
get_loop_var_idx(cctx, idx, lvar);
}
return OK;
}
}
// Find local in outer function scope.
if (cctx->ctx_outer != NULL)
{
if (lookup_local(name, len, lvar, cctx->ctx_outer) == OK)
{
if (lvar != NULL)
{
cctx->ctx_outer_used = TRUE;
++lvar->lv_from_outer;
}
return OK;
}
}
return FAIL;
}
/*
* Lookup an argument in the current function and an enclosing function.
* Returns the argument index in "idxp"
* Returns the argument type in "type"
* Sets "gen_load_outer" to TRUE if found in outer scope.
* Returns OK when found, FAIL otherwise.
*/
int
arg_exists(
char_u *name,
size_t len,
int *idxp,
type_T **type,
int *gen_load_outer,
cctx_T *cctx)
{
int idx;
char_u *va_name;
if (len == 0)
return FAIL;
for (idx = 0; idx < cctx->ctx_ufunc->uf_args_visible; ++idx)
{
char_u *arg = FUNCARG(cctx->ctx_ufunc, idx);
if (STRNCMP(name, arg, len) == 0 && arg[len] == NUL)
{
if (idxp != NULL)
{
// Arguments are located above the frame pointer. One further
// if there is a vararg argument
*idxp = idx - (cctx->ctx_ufunc->uf_args.ga_len
+ STACK_FRAME_SIZE)
+ (cctx->ctx_ufunc->uf_va_name != NULL ? -1 : 0);
if (cctx->ctx_ufunc->uf_arg_types != NULL)
*type = cctx->ctx_ufunc->uf_arg_types[idx];
else
*type = &t_any;
}
return OK;
}
}
va_name = cctx->ctx_ufunc->uf_va_name;
if (va_name != NULL
&& STRNCMP(name, va_name, len) == 0 && va_name[len] == NUL)
{
if (idxp != NULL)
{
// varargs is always the last argument
*idxp = -STACK_FRAME_SIZE - 1;
*type = cctx->ctx_ufunc->uf_va_type;
}
return OK;
}
if (cctx->ctx_outer != NULL)
{
// Lookup the name for an argument of the outer function.
if (arg_exists(name, len, idxp, type, gen_load_outer, cctx->ctx_outer)
== OK)
{
if (gen_load_outer != NULL)
++*gen_load_outer;
return OK;
}
}
return FAIL;
}
/*
* Lookup a script-local variable in the current script, possibly defined in a
* block that contains the function "cctx->ctx_ufunc".
* "cctx" is NULL at the script level, "cstack" is NULL in a function.
* If "len" is <= 0 "name" must be NUL terminated.
* Return NULL when not found.
*/
static sallvar_T *
find_script_var(char_u *name, size_t len, cctx_T *cctx, cstack_T *cstack)
{
scriptitem_T *si = SCRIPT_ITEM(current_sctx.sc_sid);
hashitem_T *hi;
int cc;
sallvar_T *sav;
ufunc_T *ufunc;
// Find the list of all script variables with the right name.
if (len > 0)
{
cc = name[len];
name[len] = NUL;
}
hi = hash_find(&si->sn_all_vars.dv_hashtab, name);
if (len > 0)
name[len] = cc;
if (HASHITEM_EMPTY(hi))
return NULL;
sav = HI2SAV(hi);
if (sav->sav_block_id == 0)
// variable defined in the top script scope is always visible
return sav;
if (cctx == NULL)
{
if (cstack == NULL)
return NULL;
// Not in a function scope, find variable with block ID equal to or
// smaller than the current block id. Use "cstack" to go up the block
// scopes.
while (sav != NULL)
{
int idx;
for (idx = cstack->cs_idx; idx >= 0; --idx)
if (cstack->cs_block_id[idx] == sav->sav_block_id)
break;
if (idx >= 0)
break;
sav = sav->sav_next;
}
return sav;
}
// Go over the variables with this name and find one that was visible
// from the function.
ufunc = cctx->ctx_ufunc;
while (sav != NULL)
{
int idx;
// Go over the blocks that this function was defined in. If the
// variable block ID matches it was visible to the function.
for (idx = 0; idx < ufunc->uf_block_depth; ++idx)
if (ufunc->uf_block_ids[idx] == sav->sav_block_id)
return sav;
sav = sav->sav_next;
}
// Not found, variable was not visible.
return NULL;
}
/*
* If "name" can be found in the current script set it's "block_id".
*/
void
update_script_var_block_id(char_u *name, int block_id)
{
scriptitem_T *si = SCRIPT_ITEM(current_sctx.sc_sid);
hashitem_T *hi;
sallvar_T *sav;
hi = hash_find(&si->sn_all_vars.dv_hashtab, name);
if (HASHITEM_EMPTY(hi))
return;
sav = HI2SAV(hi);
sav->sav_block_id = block_id;
}
/*
* Return TRUE if the script context is Vim9 script.
*/
int
script_is_vim9(void)
{
return SCRIPT_ITEM(current_sctx.sc_sid)->sn_version == SCRIPT_VERSION_VIM9;
}
/*
* Lookup a variable (without s: prefix) in the current script.
* "cctx" is NULL at the script level, "cstack" is NULL in a function.
* Returns OK or FAIL.
*/
int
script_var_exists(char_u *name, size_t len, cctx_T *cctx, cstack_T *cstack)
{
if (current_sctx.sc_sid <= 0)
return FAIL;
if (script_is_vim9())
{
// Check script variables that were visible where the function was
// defined.
if (find_script_var(name, len, cctx, cstack) != NULL)
return OK;
}
else
{
hashtab_T *ht = &SCRIPT_VARS(current_sctx.sc_sid);
dictitem_T *di;
int cc;
// Check script variables that are currently visible
cc = name[len];
name[len] = NUL;
di = find_var_in_ht(ht, 0, name, TRUE);
name[len] = cc;
if (di != NULL)
return OK;
}
return FAIL;
}
/*
* Returns the index of a class method or class variable with name "name"
* accessible in the currently compiled function.
* If "cl_ret" is not NULL set it to the class.
* Otherwise return -1.
*/
static int
cctx_class_midx(
cctx_T *cctx,
int is_method,
char_u *name,
size_t len,
class_T **cl_ret)
{
if (cctx == NULL || cctx->ctx_ufunc == NULL
|| cctx->ctx_ufunc->uf_class == NULL
|| cctx->ctx_ufunc->uf_defclass == NULL)
return -1;
// Search for the class method or variable in the class where the calling
// function is defined.
class_T *cl = cctx->ctx_ufunc->uf_defclass;
int m_idx = is_method ? class_method_idx(cl, name, len)
: class_member_idx(cl, name, len);
if (m_idx < 0)
{
cl = cl->class_extends;
while (cl != NULL)
{
m_idx = is_method ? class_method_idx(cl, name, len)
: class_member_idx(cl, name, len);
if (m_idx >= 0)
break;
cl = cl->class_extends;
}
}
if (m_idx >= 0)
{
if (cl_ret != NULL)
*cl_ret = cl;
}
return m_idx;
}
/*
* Returns the index of a class method with name "name" accessible in the
* currently compiled function. Returns -1 if not found. The class where the
* method is defined is returned in "cl_ret".
*/
int
cctx_class_method_idx(
cctx_T *cctx,
char_u *name,
size_t len,
class_T **cl_ret)
{
return cctx_class_midx(cctx, TRUE, name, len, cl_ret);
}
/*
* Returns the index of a class variable with name "name" accessible in the
* currently compiled function. Returns -1 if not found. The class where the
* variable is defined is returned in "cl_ret".
*/
int
cctx_class_member_idx(
cctx_T *cctx,
char_u *name,
size_t len,
class_T **cl_ret)
{
return cctx_class_midx(cctx, FALSE, name, len, cl_ret);
}
/*
* Return TRUE if "name" is a local variable, argument, script variable or
* imported. Also if "name" is "this" and in a class method.
*/
static int
variable_exists(char_u *name, size_t len, cctx_T *cctx)
{
return (cctx != NULL
&& (lookup_local(name, len, NULL, cctx) == OK
|| arg_exists(name, len, NULL, NULL, NULL, cctx) == OK
|| (len == 4
&& cctx->ctx_ufunc != NULL
&& (cctx->ctx_ufunc->uf_flags & (FC_OBJECT|FC_NEW))
&& STRNCMP(name, "this", 4) == 0)))
|| script_var_exists(name, len, cctx, NULL) == OK
|| cctx_class_member_idx(cctx, name, len, NULL) >= 0
|| find_imported(name, len, FALSE) != NULL;
}
/*
* Return TRUE if "name" is a local variable, argument, script variable,
* imported or function. Or commands are being skipped, a declaration may have
* been skipped then.
*/
static int
item_exists(char_u *name, size_t len, int cmd UNUSED, cctx_T *cctx)
{
return variable_exists(name, len, cctx);
}
/*
* Check if "p[len]" is already defined, either in script "import_sid" or in
* compilation context "cctx".
* "cctx" is NULL at the script level, "cstack" is NULL in a function.
* Does not check the global namespace.
* If "is_arg" is TRUE the error message is for an argument name.
* Return FAIL and give an error if it defined.
*/
int
check_defined(
char_u *p,
size_t len,
cctx_T *cctx,
cstack_T *cstack,
int is_arg)
{
int c = p[len];
ufunc_T *ufunc = NULL;
// underscore argument is OK
if (len == 1 && *p == '_')
return OK;
if (script_var_exists(p, len, cctx, cstack) == OK)
{
if (is_arg)
semsg(_(e_argument_already_declared_in_script_str), p);
else
semsg(_(e_variable_already_declared_in_script_str), p);
return FAIL;
}
if (cctx_class_member_idx(cctx, p, len, NULL) >= 0)
{
if (is_arg)
semsg(_(e_argument_already_declared_in_class_str), p);
else
semsg(_(e_variable_already_declared_in_class_str), p);
return FAIL;
}
p[len] = NUL;
if ((cctx != NULL
&& (lookup_local(p, len, NULL, cctx) == OK
|| arg_exists(p, len, NULL, NULL, NULL, cctx) == OK))
|| find_imported(p, len, FALSE) != NULL
|| (ufunc = find_func_even_dead(p, 0)) != NULL)
{
// A local or script-local function can shadow a global function.
if (ufunc == NULL || ((ufunc->uf_flags & FC_DEAD) == 0
&& (!func_is_global(ufunc)
|| (p[0] == 'g' && p[1] == ':'))))
{
if (is_arg)
semsg(_(e_argument_name_shadows_existing_variable_str), p);
else
semsg(_(e_name_already_defined_str), p);
p[len] = c;
return FAIL;
}
}
p[len] = c;
return OK;
}
/*
* Return TRUE if "actual" could be "expected" and a runtime typecheck is to be
* used. Return FALSE if the types will never match.
*/
static int
use_typecheck(type_T *actual, type_T *expected)
{
if (actual->tt_type == VAR_ANY
|| actual->tt_type == VAR_UNKNOWN
|| (actual->tt_type == VAR_FUNC
&& (expected->tt_type == VAR_FUNC
|| expected->tt_type == VAR_PARTIAL)
&& (actual->tt_member == &t_any
|| actual->tt_member == &t_unknown
|| actual->tt_argcount < 0)
&& (actual->tt_member == &t_unknown ||
(actual->tt_member == &t_void)
== (expected->tt_member == &t_void))))
return TRUE;
if (actual->tt_type == VAR_OBJECT && expected->tt_type == VAR_OBJECT)
return TRUE;
if ((actual->tt_type == VAR_LIST || actual->tt_type == VAR_DICT)
&& actual->tt_type == expected->tt_type)
// This takes care of a nested list or dict.
return use_typecheck(actual->tt_member, expected->tt_member);
return FALSE;
}
/*
* Check that
* - "actual" matches "expected" type or
* - "actual" is a type that can be "expected" type: add a runtime check; or
* - return FAIL.
* If "actual_is_const" is TRUE then the type won't change at runtime, do not
* generate a TYPECHECK.
*/
int
need_type_where(
type_T *actual,
type_T *expected,
int number_ok, // expect VAR_FLOAT but VAR_NUMBER is OK
int offset,
where_T where,
cctx_T *cctx,
int silent,
int actual_is_const)
{
int ret;
if (expected->tt_type != VAR_CLASS && expected->tt_type != VAR_TYPEALIAS)
{
if (check_type_is_value(actual) == FAIL)
return FAIL;
}
if (expected == &t_bool && actual != &t_bool
&& (actual->tt_flags & TTFLAG_BOOL_OK))
{
// Using "0", "1" or the result of an expression with "&&" or "||" as a
// boolean is OK but requires a conversion.
generate_2BOOL(cctx, FALSE, offset);
return OK;
}
ret = check_type_maybe(expected, actual, FALSE, where);
if (ret == OK)
return OK;
// If actual a constant a runtime check makes no sense. If it's
// null_function it is OK.
if (actual_is_const && ret == MAYBE && actual == &t_func_unknown)
return OK;
// If the actual type can be the expected type add a runtime check.
if (!actual_is_const && ret == MAYBE && use_typecheck(actual, expected))
{
generate_TYPECHECK(cctx, expected, number_ok, offset,
where.wt_kind == WT_VARIABLE, where.wt_index);
return OK;
}
if (!silent)
type_mismatch_where(expected, actual, where);
return FAIL;
}
int
need_type(
type_T *actual,
type_T *expected,
int number_ok, // when expected is float number is also OK
int offset,
int arg_idx,
cctx_T *cctx,
int silent,
int actual_is_const)
{
where_T where = WHERE_INIT;
if (arg_idx > 0)
{
where.wt_index = arg_idx;
where.wt_kind = WT_ARGUMENT;
}
return need_type_where(actual, expected, number_ok, offset, where,
cctx, silent, actual_is_const);
}
/*
* Set type of variable "lvar" to "type". If the variable is a constant then
* the type gets TTFLAG_CONST.
*/
static void
set_var_type(lvar_T *lvar, type_T *type_arg, cctx_T *cctx)
{
type_T *type = type_arg;
if (lvar->lv_const == ASSIGN_CONST && (type->tt_flags & TTFLAG_CONST) == 0)
{
if (type->tt_flags & TTFLAG_STATIC)
// entry in static_types[] is followed by const type
type = type + 1;
else
{
type = copy_type(type, cctx->ctx_type_list);
type->tt_flags |= TTFLAG_CONST;
}
}
lvar->lv_type = type;
}
/*
* Reserve space for a local variable.
* "assign" can be ASSIGN_VAR for :var, ASSIGN_CONST for :const and
* ASSIGN_FINAL for :final.
* Return the variable or NULL if it failed.
*/
lvar_T *
reserve_local(
cctx_T *cctx,
char_u *name,
size_t len,
int assign,
type_T *type)
{
lvar_T *lvar;
dfunc_T *dfunc;
if (arg_exists(name, len, NULL, NULL, NULL, cctx) == OK)
{
emsg_namelen(_(e_str_is_used_as_argument), name, (int)len);
return NULL;
}
if (GA_GROW_FAILS(&cctx->ctx_locals, 1))
return NULL;
lvar = ((lvar_T *)cctx->ctx_locals.ga_data) + cctx->ctx_locals.ga_len++;
CLEAR_POINTER(lvar);
// Every local variable uses the next entry on the stack. We could re-use
// the last ones when leaving a scope, but then variables used in a closure
// might get overwritten. To keep things simple do not re-use stack
// entries. This is less efficient, but memory is cheap these days.
dfunc = ((dfunc_T *)def_functions.ga_data) + cctx->ctx_ufunc->uf_dfunc_idx;
lvar->lv_idx = dfunc->df_var_names.ga_len;
lvar->lv_name = vim_strnsave(name, len == 0 ? STRLEN(name) : len);
lvar->lv_const = assign;
if (type == &t_unknown || type == &t_any)
// type not known yet, may be inferred from RHS
lvar->lv_type = type;
else
// may use TTFLAG_CONST
set_var_type(lvar, type, cctx);
// Remember the name for debugging.
if (GA_GROW_FAILS(&dfunc->df_var_names, 1))
return NULL;
((char_u **)dfunc->df_var_names.ga_data)[lvar->lv_idx] =
vim_strsave(lvar->lv_name);
++dfunc->df_var_names.ga_len;
return lvar;
}
/*
* If "check_writable" is ASSIGN_CONST give an error if the variable was
* defined with :final or :const, if "check_writable" is ASSIGN_FINAL give an
* error if the variable was defined with :const.
*/
static int
check_item_writable(svar_T *sv, int check_writable, char_u *name)
{
if ((check_writable == ASSIGN_CONST && sv->sv_const != 0)
|| (check_writable == ASSIGN_FINAL
&& sv->sv_const == ASSIGN_CONST))
{
semsg(_(e_cannot_change_readonly_variable_str), name);
return FAIL;
}
return OK;
}
/*
* Find "name" in script-local items of script "sid".
* Pass "check_writable" to check_item_writable().
* "cctx" is NULL at the script level, "cstack" is NULL in a function.
* Returns the index in "sn_var_vals" if found.
* If found but not in "sn_var_vals" returns -1.
* If not found or the variable is not writable returns -2.
*/
int
get_script_item_idx(
int sid,
char_u *name,
int check_writable,
cctx_T *cctx,
cstack_T *cstack)
{
hashtab_T *ht;
dictitem_T *di;
scriptitem_T *si = SCRIPT_ITEM(sid);
svar_T *sv;
int idx;
if (!SCRIPT_ID_VALID(sid))
return -1;
if (sid == current_sctx.sc_sid)
{
sallvar_T *sav = find_script_var(name, 0, cctx, cstack);
if (sav == NULL)
return -2;
idx = sav->sav_var_vals_idx;
sv = ((svar_T *)si->sn_var_vals.ga_data) + idx;
if (check_item_writable(sv, check_writable, name) == FAIL)
return -2;
return idx;
}
// First look the name up in the hashtable.
ht = &SCRIPT_VARS(sid);
di = find_var_in_ht(ht, 0, name, TRUE);
if (di == NULL)
{
if (si->sn_autoload_prefix != NULL)
{
hashitem_T *hi;
// A variable exported from an autoload script is in the global
// variables, we can find it in the all_vars table.
hi = hash_find(&si->sn_all_vars.dv_hashtab, name);
if (!HASHITEM_EMPTY(hi))
return HI2SAV(hi)->sav_var_vals_idx;
}
return -2;
}
// Now find the svar_T index in sn_var_vals.
for (idx = 0; idx < si->sn_var_vals.ga_len; ++idx)
{
sv = ((svar_T *)si->sn_var_vals.ga_data) + idx;
if (sv->sv_tv == &di->di_tv)
{
if (check_item_writable(sv, check_writable, name) == FAIL)
return -2;
return idx;
}
}
return -1;
}
static imported_T *
find_imported_in_script(char_u *name, size_t len, int sid)
{
scriptitem_T *si;
int idx;
if (!SCRIPT_ID_VALID(sid))
return NULL;
si = SCRIPT_ITEM(sid);
for (idx = 0; idx < si->sn_imports.ga_len; ++idx)
{
imported_T *import = ((imported_T *)si->sn_imports.ga_data) + idx;
if (len == 0 ? STRCMP(name, import->imp_name) == 0
: STRLEN(import->imp_name) == len
&& STRNCMP(name, import->imp_name, len) == 0)
return import;
}
return NULL;
}
/*
* Find "name" in imported items of the current script.
* If "len" is 0 use any length that works.
* If "load" is TRUE and the script was not loaded yet, load it now.
*/
imported_T *
find_imported(char_u *name, size_t len, int load)
{
if (!SCRIPT_ID_VALID(current_sctx.sc_sid))
return NULL;
// Skip over "s:" before "s:something" to find the import name.
int off = name[0] == 's' && name[1] == ':' ? 2 : 0;
imported_T *ret = find_imported_in_script(name + off, len - off,
current_sctx.sc_sid);
if (ret != NULL && load && (ret->imp_flags & IMP_FLAGS_AUTOLOAD))
{
scid_T actual_sid = 0;
int save_emsg_off = emsg_off;
// "emsg_off" will be set when evaluating an expression silently, but
// we do want to know about errors in a script. Also because it then
// aborts when an error is encountered.
emsg_off = FALSE;
// script found before but not loaded yet
ret->imp_flags &= ~IMP_FLAGS_AUTOLOAD;
(void)do_source(SCRIPT_ITEM(ret->imp_sid)->sn_name, FALSE,
DOSO_NONE, &actual_sid);
// If the script is a symlink it may be sourced with another name, may
// need to adjust the script ID for that.
if (actual_sid != 0)
ret->imp_sid = actual_sid;
emsg_off = save_emsg_off;
}
return ret;
}
/*
* Called when checking for a following operator at "arg". When the rest of
* the line is empty or only a comment, peek the next line. If there is a next
* line return a pointer to it and set "nextp".
* Otherwise skip over white space.
*/
char_u *
may_peek_next_line(cctx_T *cctx, char_u *arg, char_u **nextp)
{
char_u *p = skipwhite(arg);
*nextp = NULL;
if (*p == NUL || (VIM_ISWHITE(*arg) && vim9_comment_start(p)))
{
*nextp = peek_next_line_from_context(cctx);
if (*nextp != NULL)
return *nextp;
}
return p;
}
/*
* Return a pointer to the next line that isn't empty or only contains a
* comment. Skips over white space.
* Returns NULL if there is none.
*/
char_u *
peek_next_line_from_context(cctx_T *cctx)
{
int lnum = cctx->ctx_lnum;
while (++lnum < cctx->ctx_ufunc->uf_lines.ga_len)
{
char_u *line = ((char_u **)cctx->ctx_ufunc->uf_lines.ga_data)[lnum];
char_u *p;
// ignore NULLs inserted for continuation lines
if (line != NULL)
{
p = skipwhite(line);
if (vim9_bad_comment(p))
return NULL;
if (*p != NUL && !vim9_comment_start(p))
return p;
}
}
return NULL;
}
/*
* Get the next line of the function from "cctx".
* Skips over empty lines. Skips over comment lines if "skip_comment" is TRUE.
* Returns NULL when at the end.
*/
char_u *
next_line_from_context(cctx_T *cctx, int skip_comment)
{
char_u *line;
do
{
++cctx->ctx_lnum;
if (cctx->ctx_lnum >= cctx->ctx_ufunc->uf_lines.ga_len)
{
line = NULL;
break;
}
line = ((char_u **)cctx->ctx_ufunc->uf_lines.ga_data)[cctx->ctx_lnum];
cctx->ctx_line_start = line;
SOURCING_LNUM = cctx->ctx_lnum + 1;
} while (line == NULL || *skipwhite(line) == NUL
|| (skip_comment && vim9_comment_start(skipwhite(line))));
return line;
}
/*
* Skip over white space at "whitep" and assign to "*arg".
* If "*arg" is at the end of the line, advance to the next line.
* Also when "whitep" points to white space and "*arg" is on a "#".
* Return FAIL if beyond the last line, "*arg" is unmodified then.
*/
int
may_get_next_line(char_u *whitep, char_u **arg, cctx_T *cctx)
{
*arg = skipwhite(whitep);
if (vim9_bad_comment(*arg))
return FAIL;
if (**arg == NUL || (VIM_ISWHITE(*whitep) && vim9_comment_start(*arg)))
{
char_u *next = next_line_from_context(cctx, TRUE);
if (next == NULL)
return FAIL;
*arg = skipwhite(next);
}
return OK;
}
/*
* Idem, and give an error when failed.
*/
int
may_get_next_line_error(char_u *whitep, char_u **arg, cctx_T *cctx)
{
if (may_get_next_line(whitep, arg, cctx) == FAIL)
{
SOURCING_LNUM = cctx->ctx_lnum + 1;
emsg(_(e_line_incomplete));
return FAIL;
}
return OK;
}
/*
* Get a line from the compilation context, compatible with exarg_T getline().
* Return a pointer to the line in allocated memory.
* Return NULL for end-of-file or some error.
*/
static char_u *
exarg_getline(
int c UNUSED,
void *cookie,
int indent UNUSED,
getline_opt_T options UNUSED)
{
cctx_T *cctx = (cctx_T *)cookie;
char_u *p;
for (;;)
{
if (cctx->ctx_lnum >= cctx->ctx_ufunc->uf_lines.ga_len - 1)
return NULL;
++cctx->ctx_lnum;
p = ((char_u **)cctx->ctx_ufunc->uf_lines.ga_data)[cctx->ctx_lnum];
// Comment lines result in NULL pointers, skip them.
if (p != NULL)
return vim_strsave(p);
}
}
void
fill_exarg_from_cctx(exarg_T *eap, cctx_T *cctx)
{
eap->ea_getline = exarg_getline;
eap->cookie = cctx;
eap->skip = cctx->ctx_skip == SKIP_YES;
}
/*
* Return TRUE if "ufunc" should be compiled, taking into account whether
* "profile" indicates profiling is to be done.
*/
int
func_needs_compiling(ufunc_T *ufunc, compiletype_T compile_type)
{
switch (ufunc->uf_def_status)
{
case UF_TO_BE_COMPILED:
return TRUE;
case UF_COMPILED:
{
dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data)
+ ufunc->uf_dfunc_idx;
switch (compile_type)
{
case CT_PROFILE:
#ifdef FEAT_PROFILE
return dfunc->df_instr_prof == NULL;
#endif
case CT_NONE:
return dfunc->df_instr == NULL;
case CT_DEBUG:
return dfunc->df_instr_debug == NULL;
}
}
case UF_NOT_COMPILED:
case UF_COMPILE_ERROR:
case UF_COMPILING:
break;
}
return FALSE;
}
/*
* Compile a nested :def command.
*/
static char_u *
compile_nested_function(exarg_T *eap, cctx_T *cctx, garray_T *lines_to_free)
{
int is_global = *eap->arg == 'g' && eap->arg[1] == ':';
char_u *name_start = eap->arg;
char_u *name_end = to_name_end(eap->arg, TRUE);
int off;
char_u *func_name;
string_T lambda_name;
ufunc_T *ufunc;
int r = FAIL;
compiletype_T compile_type;
int funcref_isn_idx = -1;
lvar_T *lvar = NULL;
if (eap->forceit)
{
emsg(_(e_cannot_use_bang_with_nested_def));
return NULL;
}
if (*name_start == '/')
{
name_end = skip_regexp(name_start + 1, '/', TRUE);
if (*name_end == '/')
++name_end;
set_nextcmd(eap, name_end);
}
if (name_end == name_start || *skipwhite(name_end) != '(')
{
if (!ends_excmd2(name_start, name_end))
{
if (*skipwhite(name_end) == '.')
semsg(_(e_cannot_define_dict_func_in_vim9_script_str),
eap->cmd);
else
semsg(_(e_invalid_command_str), eap->cmd);
return NULL;
}
// "def" or "def Name": list functions
if (generate_DEF(cctx, name_start, name_end - name_start) == FAIL)
return NULL;
return eap->nextcmd == NULL ? (char_u *)"" : eap->nextcmd;
}
// Only g:Func() can use a namespace.
if (name_start[1] == ':' && !is_global)
{
semsg(_(e_namespace_not_supported_str), name_start);
return NULL;
}
if (cctx->ctx_skip != SKIP_YES
&& check_defined(name_start, name_end - name_start, cctx,
NULL, FALSE) == FAIL)
return NULL;
if (!ASCII_ISUPPER(is_global ? name_start[2] : name_start[0]))
{
semsg(_(e_function_name_must_start_with_capital_str), name_start);
return NULL;
}
eap->arg = name_end;
fill_exarg_from_cctx(eap, cctx);
eap->forceit = FALSE;
// We use the special <Lamba>99 name, but it's not really a lambda.
lambda_name = get_lambda_name();
lambda_name.string = vim_strnsave(lambda_name.string, lambda_name.length);
if (lambda_name.string == NULL)
return NULL;
// This may free the current line, make a copy of the name.
off = is_global ? 2 : 0;
func_name = vim_strnsave(name_start + off, name_end - name_start - off);
if (func_name == NULL)
{
r = FAIL;
goto theend;
}
// Make sure "KeyTyped" is not set, it may cause indent to be written.
int save_KeyTyped = KeyTyped;
KeyTyped = FALSE;
ufunc = define_function(eap, lambda_name.string, lines_to_free, 0, NULL, 0);
KeyTyped = save_KeyTyped;
if (ufunc == NULL)
{
r = eap->skip ? OK : FAIL;
goto theend;
}
if (eap->nextcmd != NULL)
{
semsg(_(e_text_found_after_str_str),
eap->cmdidx == CMD_def ? "enddef" : "endfunction", eap->nextcmd);
r = FAIL;
func_ptr_unref(ufunc);
goto theend;
}
// copy over the block scope IDs before compiling
if (!is_global && cctx->ctx_ufunc->uf_block_depth > 0)
{
int block_depth = cctx->ctx_ufunc->uf_block_depth;
ufunc->uf_block_ids = ALLOC_MULT(int, block_depth);
if (ufunc->uf_block_ids != NULL)
{
mch_memmove(ufunc->uf_block_ids, cctx->ctx_ufunc->uf_block_ids,
sizeof(int) * block_depth);
ufunc->uf_block_depth = block_depth;
}
}
// Define the funcref before compiling, so that it is found by any
// recursive call.
if (is_global)
{
r = generate_NEWFUNC(cctx, lambda_name.string, func_name);
func_name = NULL;
lambda_name.string = NULL;
lambda_name.length = 0;
}
else
{
// Define a local variable for the function reference.
lvar = reserve_local(cctx, func_name, name_end - name_start,
ASSIGN_CONST, ufunc->uf_func_type);
if (lvar == NULL)
goto theend;
if (generate_FUNCREF(cctx, ufunc, NULL, FALSE, 0, &funcref_isn_idx) == FAIL)
goto theend;
r = generate_STORE(cctx, ISN_STORE, lvar->lv_idx, NULL);
}
compile_type = get_compile_type(ufunc);
#ifdef FEAT_PROFILE
// If the outer function is profiled, also compile the nested function for
// profiling.
if (cctx->ctx_compile_type == CT_PROFILE)
compile_type = CT_PROFILE;
#endif
if (func_needs_compiling(ufunc, compile_type)
&& compile_def_function(ufunc, TRUE, compile_type, cctx) == FAIL)
{
func_ptr_unref(ufunc);
if (lvar != NULL)
// Now the local variable can't be used.
*lvar->lv_name = '/'; // impossible value
goto theend;
}
#ifdef FEAT_PROFILE
// When the outer function is compiled for profiling, the nested function
// may be called without profiling. Compile it here in the right context.
if (compile_type == CT_PROFILE && func_needs_compiling(ufunc, CT_NONE))
compile_def_function(ufunc, FALSE, CT_NONE, cctx);
#endif
// If a FUNCREF instruction was generated, set the index after compiling.
if (funcref_isn_idx != -1 && ufunc->uf_def_status == UF_COMPILED)
{
isn_T *funcref_isn = ((isn_T *)cctx->ctx_instr.ga_data) +
funcref_isn_idx;
funcref_isn->isn_arg.funcref.fr_dfunc_idx = ufunc->uf_dfunc_idx;
}
theend:
vim_free(lambda_name.string);
vim_free(func_name);
return r == FAIL ? NULL : (char_u *)"";
}
/*
* Compile one Vim expression {expr} in string "p".
* "p" points to the opening "{".
* Return a pointer to the character after "}", NULL for an error.
*/
char_u *
compile_one_expr_in_str(char_u *p, cctx_T *cctx)
{
char_u *block_start;
char_u *block_end;
// Skip the opening {.
block_start = skipwhite(p + 1);
block_end = block_start;
if (*block_start != NUL && skip_expr(&block_end, NULL) == FAIL)
return NULL;
block_end = skipwhite(block_end);
// The block must be closed by a }.
if (*block_end != '}')
{
semsg(_(e_missing_close_curly_str), p);
return NULL;
}
if (compile_expr0(&block_start, cctx) == FAIL)
return NULL;
may_generate_2STRING(-1, TOSTRING_INTERPOLATE, cctx);
return block_end + 1;
}
/*
* Compile a string "str" (either containing a literal string or a mix of
* literal strings and Vim expressions of the form `{expr}`). This is used
* when compiling a heredoc assignment to a variable or an interpolated string
* in a Vim9 def function. Vim9 instructions are generated to push strings,
* evaluate expressions, concatenate them and create a list of lines. When
* "evalstr" is TRUE, Vim expressions in "str" are evaluated.
*/
int
compile_all_expr_in_str(char_u *str, int evalstr, cctx_T *cctx)
{
char_u *p = str;
char_u *val;
int count = 0;
if (cctx->ctx_skip == SKIP_YES)
return OK;
if (!evalstr || *str == NUL)
{
// Literal string, possibly empty.
val = *str != NUL ? vim_strsave(str) : NULL;
return generate_PUSHS(cctx, &val);
}
// Push all the string pieces to the stack, followed by a ISN_CONCAT.
while (*p != NUL)
{
char_u *lit_start;
int escaped_brace = FALSE;
// Look for a block start.
lit_start = p;
while (*p != '{' && *p != '}' && *p != NUL)
++p;
if (*p != NUL && *p == p[1])
{
// Escaped brace, unescape and continue.
// Include the brace in the literal string.
++p;
escaped_brace = TRUE;
}
else if (*p == '}')
{
semsg(_(e_stray_closing_curly_str), str);
return FAIL;
}
// Append the literal part.
if (p != lit_start)
{
val = vim_strnsave(lit_start, (size_t)(p - lit_start));
if (generate_PUSHS(cctx, &val) == FAIL)
return FAIL;
++count;
}
if (*p == NUL)
break;
if (escaped_brace)
{
// Skip the second brace.
++p;
continue;
}
p = compile_one_expr_in_str(p, cctx);
if (p == NULL)
return FAIL;
++count;
}
// Small optimization, if there's only a single piece skip the ISN_CONCAT.
if (count > 1)
return generate_CONCAT(cctx, count);
return OK;
}
/*
* Return the length of an assignment operator, or zero if there isn't one.
*/
int
assignment_len(char_u *p, int *heredoc)
{
if (*p == '=')
{
if (p[1] == '<' && p[2] == '<')
{
*heredoc = TRUE;
return 3;
}
return 1;
}
if (vim_strchr((char_u *)"+-*/%", *p) != NULL && p[1] == '=')
return 2;
if (STRNCMP(p, "..=", 3) == 0)
return 3;
return 0;
}
/*
* Generate the load instruction for "name".
*/
static int
generate_loadvar(cctx_T *cctx, lhs_T *lhs)
{
char_u *name = lhs->lhs_name;
type_T *type = lhs->lhs_type;
int res = OK;
switch (lhs->lhs_dest)
{
case dest_option:
case dest_func_option:
generate_LOAD(cctx, ISN_LOADOPT, 0, name, type);
break;
case dest_global:
if (vim_strchr(name, AUTOLOAD_CHAR) == NULL)
{
if (name[2] == NUL)
generate_instr_type(cctx, ISN_LOADGDICT, &t_dict_any);
else
generate_LOAD(cctx, ISN_LOADG, 0, name + 2, type);
}
else
generate_LOAD(cctx, ISN_LOADAUTO, 0, name, type);
break;
case dest_buffer:
generate_LOAD(cctx, ISN_LOADB, 0, name + 2, type);
break;
case dest_window:
generate_LOAD(cctx, ISN_LOADW, 0, name + 2, type);
break;
case dest_tab:
generate_LOAD(cctx, ISN_LOADT, 0, name + 2, type);
break;
case dest_script:
case dest_script_v9:
res = compile_load_scriptvar(cctx,
name + (name[1] == ':' ? 2 : 0), NULL, NULL, NULL);
break;
case dest_env:
// Include $ in the name here
generate_LOAD(cctx, ISN_LOADENV, 0, name, type);
break;
case dest_reg:
generate_LOAD(cctx, ISN_LOADREG, name[1], NULL, &t_string);
break;
case dest_vimvar:
generate_LOADV(cctx, name + 2);
break;
case dest_local:
if (cctx->ctx_skip != SKIP_YES)
{
lvar_T *lvar = lhs->lhs_lvar;
if (lvar->lv_from_outer > 0)
generate_LOADOUTER(cctx, lvar->lv_idx, lvar->lv_from_outer,
lvar->lv_loop_depth, lvar->lv_loop_idx, type);
else
generate_LOAD(cctx, ISN_LOAD, lvar->lv_idx, NULL, type);
}
break;
case dest_class_member:
generate_CLASSMEMBER(cctx, TRUE, lhs->lhs_class,
lhs->lhs_classmember_idx);
break;
case dest_expr:
// list or dict value should already be on the stack.
break;
}
return res;
}
/*
* Skip over "[expr]" or ".member".
* Does not check for any errors.
*/
static char_u *
skip_index(char_u *start)
{
char_u *p = start;
if (*p == '[')
{
p = skipwhite(p + 1);
(void)skip_expr(&p, NULL);
p = skipwhite(p);
if (*p == ']')
return p + 1;
return p;
}
// if (*p == '.')
return to_name_end(p + 1, TRUE);
}
void
vim9_declare_error(char_u *name)
{
char *scope = "";
switch (*name)
{
case 'g': scope = _("global"); break;
case 'b': scope = _("buffer"); break;
case 'w': scope = _("window"); break;
case 't': scope = _("tab"); break;
case 'v': scope = "v:"; break;
case '$': semsg(_(e_cannot_declare_an_environment_variable_str), name);
return;
case '&': semsg(_(e_cannot_declare_an_option_str), name);
return;
case '@': semsg(_(e_cannot_declare_a_register_str), name);
return;
default: return;
}
semsg(_(e_cannot_declare_a_scope_variable_str), scope, name);
}
/*
* Return TRUE if "name" is a valid register to use.
* Return FALSE and give an error message if not.
*/
static int
valid_dest_reg(int name)
{
if ((name == '@' || valid_yank_reg(name, FALSE)) && name != '.')
return TRUE;
emsg_invreg(name);
return FAIL;
}
/*
* For one assignment figure out the type of destination. Return it in "dest".
* When not recognized "dest" is not set.
* For an option "option_scope" is set.
* For a v:var "vimvaridx" is set.
* "type" is set to the destination type if known, unchanted otherwise.
* Return FAIL if an error message was given.
*/
int
get_var_dest(
char_u *name,
assign_dest_T *dest,
cmdidx_T cmdidx,
int *option_scope,
int *vimvaridx,
type_T **type,
cctx_T *cctx)
{
char_u *p;
if (*name == '&')
{
int cc;
long numval;
getoption_T opt_type;
int opt_p_flags;
*dest = dest_option;
if (cmdidx == CMD_final || cmdidx == CMD_const)
{
emsg(_(e_cannot_lock_option));
return FAIL;
}
p = name;
p = find_option_end(&p, option_scope);
if (p == NULL)
{
// cannot happen?
emsg(_(e_unexpected_characters_in_assignment));
return FAIL;
}
cc = *p;
*p = NUL;
opt_type = get_option_value(skip_option_env_lead(name),
&numval, NULL, &opt_p_flags, *option_scope);
*p = cc;
switch (opt_type)
{
case gov_unknown:
semsg(_(e_unknown_option_str), name);
return FAIL;
case gov_string:
case gov_hidden_string:
if (opt_p_flags & P_FUNC)
{
// might be a Funcref, check the type later
*type = &t_any;
*dest = dest_func_option;
}
else
{
*type = &t_string;
}
break;
case gov_bool:
case gov_hidden_bool:
*type = &t_bool;
break;
case gov_number:
case gov_hidden_number:
*type = &t_number;
break;
}
}
else if (*name == '$')
{
*dest = dest_env;
*type = &t_string;
}
else if (*name == '@')
{
if (!valid_dest_reg(name[1]))
return FAIL;
*dest = dest_reg;
*type = name[1] == '#' ? &t_number_or_string : &t_string;
}
else if (STRNCMP(name, "g:", 2) == 0)
{
*dest = dest_global;
}
else if (STRNCMP(name, "b:", 2) == 0)
{
*dest = dest_buffer;
}
else if (STRNCMP(name, "w:", 2) == 0)
{
*dest = dest_window;
}
else if (STRNCMP(name, "t:", 2) == 0)
{
*dest = dest_tab;
}
else if (STRNCMP(name, "v:", 2) == 0)
{
typval_T *vtv;
int di_flags;
*vimvaridx = find_vim_var(name + 2, &di_flags);
if (*vimvaridx < 0)
{
semsg(_(e_variable_not_found_str), name);
return FAIL;
}
// We use the current value of "sandbox" here, is that OK?
if (var_check_ro(di_flags, name, FALSE))
return FAIL;
*dest = dest_vimvar;
vtv = get_vim_var_tv(*vimvaridx);
*type = typval2type_vimvar(vtv, cctx->ctx_type_list);
}
return OK;
}
static int
is_decl_command(cmdidx_T cmdidx)
{
return cmdidx == CMD_let || cmdidx == CMD_var
|| cmdidx == CMD_final || cmdidx == CMD_const;
}
/*
* Returns TRUE if the class or object variable in "lhs" is modifiable.
* "var_start" points to the start of the variable name and "lhs->lhs_varlen"
* has the total length. Note that the "lhs" can be nested an object reference
* (e.g. a.b.c.d.var).
*/
static int
lhs_class_member_modifiable(lhs_T *lhs, char_u *var_start, cctx_T *cctx)
{
size_t varlen = lhs->lhs_varlen;
class_T *cl = lhs->lhs_type->tt_class;
int is_object = lhs->lhs_type->tt_type == VAR_OBJECT;
char_u *name = var_start + varlen + 1;
size_t namelen = lhs->lhs_end - var_start - varlen - 1;
ocmember_T *m;
m = member_lookup(cl, lhs->lhs_type->tt_type, name, namelen, NULL);
if (m == NULL)
{
member_not_found_msg(cl, lhs->lhs_type->tt_type, name, namelen);
return FALSE;
}
if (IS_ENUM(cl))
{
semsg(_(e_enumvalue_str_cannot_be_modified), cl->class_name,
m->ocm_name);
return FALSE;
}
// If it is private member variable, then accessing it outside the
// class is not allowed.
// If it is a read only class variable, then it can be modified
// only inside the class where it is defined.
if ((m->ocm_access != VIM_ACCESS_ALL) &&
((is_object && !inside_class(cctx, cl))
|| (!is_object && cctx->ctx_ufunc->uf_class != cl)))
{
char *msg = (m->ocm_access == VIM_ACCESS_PRIVATE)
? e_cannot_access_protected_variable_str
: e_variable_is_not_writable_str;
emsg_var_cl_define(msg, m->ocm_name, 0, cl);
return FALSE;
}
return TRUE;
}
/*
* Initialize "lhs" with default values
*/
static void
lhs_init_defaults(lhs_T *lhs)
{
CLEAR_POINTER(lhs);
lhs->lhs_dest = dest_local;
lhs->lhs_vimvaridx = -1;
lhs->lhs_scriptvar_idx = -1;
lhs->lhs_member_idx = -1;
}
/*
* When compiling a LHS variable name, find the end of the destination and the
* end of the variable name.
*/
static int
lhs_find_var_end(
lhs_T *lhs,
char_u *var_start,
int is_decl,
char_u **var_endp)
{
char_u *var_end = *var_endp;
// "lhs_dest_end" is the end of the destination, including "[expr]" or
// ".name".
// "var_end" is the end of the variable/option/etc. name.
lhs->lhs_dest_end = skip_var_one(var_start, FALSE);
if (*var_start == '@')
{
if (!valid_dest_reg(var_start[1]))
return FAIL;
var_end = var_start + 2;
}
else
{
// skip over the leading "&", "&l:", "&g:" and "$"
var_end = skip_option_env_lead(var_start);
var_end = to_name_end(var_end, TRUE);
}
// "a: type" is declaring variable "a" with a type, not dict "a:".
if (is_decl && lhs->lhs_dest_end == var_start + 2
&& lhs->lhs_dest_end[-1] == ':')
--lhs->lhs_dest_end;
if (is_decl && var_end == var_start + 2 && var_end[-1] == ':')
--var_end;
lhs->lhs_end = lhs->lhs_dest_end;
*var_endp = var_end;
return OK;
}
/*
* Set various fields in "lhs"
*/
static int
lhs_init(
lhs_T *lhs,
char_u *var_start,
int is_decl,
int heredoc,
char_u **var_endp)
{
char_u *var_end = *var_endp;
lhs_init_defaults(lhs);
// Find the end of the variable and the destination
if (lhs_find_var_end(lhs, var_start, is_decl, &var_end) == FAIL)
return FAIL;
// compute the length of the destination without "[expr]" or ".name"
lhs->lhs_varlen = var_end - var_start;
lhs->lhs_varlen_total = lhs->lhs_varlen;
lhs->lhs_name = vim_strnsave(var_start, lhs->lhs_varlen);
if (lhs->lhs_name == NULL)
return FAIL;
if (lhs->lhs_dest_end > var_start + lhs->lhs_varlen)
// Something follows after the variable: "var[idx]" or "var.key".
lhs->lhs_has_index = TRUE;
lhs->lhs_type = heredoc ? &t_list_string : &t_any;
*var_endp = var_end;
return OK;
}
/*
* Compile a LHS class variable name.
*/
static int
compile_lhs_class_variable(
cctx_T *cctx,
lhs_T *lhs,
class_T *defcl,
int is_decl)
{
if (cctx->ctx_ufunc->uf_defclass != defcl)
{
// A class variable can be accessed without the class name
// only inside a class.
semsg(_(e_class_variable_str_accessible_only_inside_class_str),
lhs->lhs_name, defcl->class_name);
return FAIL;
}
if (is_decl)
{
semsg(_(e_variable_already_declared_in_class_str), lhs->lhs_name);
return FAIL;
}
ocmember_T *m = &defcl->class_class_members[lhs->lhs_classmember_idx];
if (oc_var_check_ro(defcl, m))
return FAIL;
lhs->lhs_dest = dest_class_member;
// The class variable is defined either in the current class or
// in one of the parent class in the hierarchy.
lhs->lhs_class = defcl;
lhs->lhs_type = oc_member_type_by_idx(defcl, FALSE,
lhs->lhs_classmember_idx);
return OK;
}
/*
* Compile an imported LHS variable
*/
static int
compile_lhs_import_var(
lhs_T *lhs,
imported_T *import,
char_u *var_start,
char_u **var_endp,
char_u **rawnamep)
{
char_u *var_end = *var_endp;
char_u *dot = vim_strchr(var_start, '.');
char_u *p;
// for an import the name is what comes after the dot
if (dot == NULL)
{
semsg(_(e_no_dot_after_imported_name_str), var_start);
return FAIL;
}
p = skipwhite(dot + 1);
var_end = to_name_end(p, TRUE);
if (var_end == p)
{
semsg(_(e_missing_name_after_imported_name_str), var_start);
return FAIL;
}
vim_free(lhs->lhs_name);
lhs->lhs_varlen = var_end - p;
lhs->lhs_name = vim_strnsave(p, lhs->lhs_varlen);
if (lhs->lhs_name == NULL)
return FAIL;
*rawnamep = lhs->lhs_name;
lhs->lhs_scriptvar_sid = import->imp_sid;
// TODO: where do we check this name is exported?
// Check if something follows: "exp.var[idx]" or
// "exp.var.key".
lhs->lhs_has_index = lhs->lhs_dest_end > skipwhite(var_end);
*var_endp = var_end;
return OK;
}
/*
* Process a script-local variable when compiling a LHS variable name.
*/
static int
compile_lhs_script_var(
cctx_T *cctx,
lhs_T *lhs,
char_u *var_start,
char_u *var_end,
int is_decl)
{
int script_namespace = FALSE;
int script_var = FALSE;
imported_T *import;
char_u *var_name;
size_t var_name_len;
if (lhs->lhs_varlen > 1 && STRNCMP(var_start, "s:", 2) == 0)
script_namespace = TRUE;
if (script_namespace)
{
var_name = var_start + 2;
var_name_len = lhs->lhs_varlen - 2;
}
else
{
var_name = var_start;
var_name_len = lhs->lhs_varlen;
}
if (script_var_exists(var_name, var_name_len, cctx, NULL) == OK)
script_var = TRUE;
import = find_imported(var_start, lhs->lhs_varlen, FALSE);
if (script_namespace || script_var || import != NULL)
{
char_u *rawname = lhs->lhs_name + (lhs->lhs_name[1] == ':' ? 2 : 0);
if (script_namespace && current_script_is_vim9())
{
semsg(_(e_cannot_use_s_colon_in_vim9_script_str), var_start);
return FAIL;
}
if (is_decl)
{
if (script_namespace)
semsg(_(e_cannot_declare_script_variable_in_function_str),
lhs->lhs_name);
else
semsg(_(e_variable_already_declared_in_script_str),
lhs->lhs_name);
return FAIL;
}
else if (cctx->ctx_ufunc->uf_script_ctx_version == SCRIPT_VERSION_VIM9
&& script_namespace
&& !script_var && import == NULL)
{
semsg(_(e_unknown_variable_str), lhs->lhs_name);
return FAIL;
}
lhs->lhs_dest = current_script_is_vim9() ? dest_script_v9 :
dest_script;
// existing script-local variables should have a type
lhs->lhs_scriptvar_sid = current_sctx.sc_sid;
if (import != NULL)
{
if (compile_lhs_import_var(lhs, import, var_start, &var_end,
&rawname) == FAIL)
return FAIL;
}
if (SCRIPT_ID_VALID(lhs->lhs_scriptvar_sid))
{
// Check writable only when no index follows.
lhs->lhs_scriptvar_idx = get_script_item_idx(
lhs->lhs_scriptvar_sid, rawname,
lhs->lhs_has_index ? ASSIGN_FINAL :
ASSIGN_CONST, cctx, NULL);
if (lhs->lhs_scriptvar_idx >= 0)
{
scriptitem_T *si = SCRIPT_ITEM(lhs->lhs_scriptvar_sid);
svar_T *sv = ((svar_T *)si->sn_var_vals.ga_data)
+ lhs->lhs_scriptvar_idx;
lhs->lhs_type = sv->sv_type;
}
}
return OK;
}
return check_defined(var_start, lhs->lhs_varlen, cctx, NULL, FALSE);
}
/*
* Compile the LHS destination.
*/
static int
compile_lhs_var_dest(
cctx_T *cctx,
lhs_T *lhs,
int cmdidx,
char_u *var_start,
char_u *var_end,
int is_decl)
{
int declare_error = FALSE;
if (get_var_dest(lhs->lhs_name, &lhs->lhs_dest, cmdidx,
&lhs->lhs_opt_flags, &lhs->lhs_vimvaridx,
&lhs->lhs_type, cctx) == FAIL)
return FAIL;
if (lhs->lhs_dest != dest_local && cmdidx != CMD_const
&& cmdidx != CMD_final)
{
// Specific kind of variable recognized.
declare_error = is_decl;
}
else
{
class_T *defcl;
// No specific kind of variable recognized, just a name.
if (check_reserved_name(lhs->lhs_name, lhs->lhs_has_index
&& *var_end == '.') == FAIL)
return FAIL;
if (lookup_local(var_start, lhs->lhs_varlen, &lhs->lhs_local_lvar,
cctx) == OK)
{
lhs->lhs_lvar = &lhs->lhs_local_lvar;
}
else
{
CLEAR_FIELD(lhs->lhs_arg_lvar);
if (arg_exists(var_start, lhs->lhs_varlen,
&lhs->lhs_arg_lvar.lv_idx, &lhs->lhs_arg_lvar.lv_type,
&lhs->lhs_arg_lvar.lv_from_outer, cctx) == OK)
{
if (is_decl)
{
semsg(_(e_str_is_used_as_argument), lhs->lhs_name);
return FAIL;
}
lhs->lhs_lvar = &lhs->lhs_arg_lvar;
}
}
if (lhs->lhs_lvar != NULL)
{
if (is_decl)
{
// if we come here with what looks like an assignment like
// .= but which has been rejected by assignment_len() from
// may_compile_assignment give a better error message
char_u *p = skipwhite(lhs->lhs_end);
if (p[0] == '.' && p[1] == '=')
emsg(_(e_dot_equal_not_supported_with_script_version_two));
else if (p[0] == ':')
// type specified in a non-var assignment
semsg(_(e_trailing_characters_str), p);
else
semsg(_(e_variable_already_declared_str), lhs->lhs_name);
return FAIL;
}
}
else if ((lhs->lhs_classmember_idx = cctx_class_member_idx(
cctx, var_start, lhs->lhs_varlen, &defcl)) >= 0)
{
if (compile_lhs_class_variable(cctx, lhs, defcl, is_decl)
== FAIL)
return FAIL;
}
else
{
if (compile_lhs_script_var(cctx, lhs, var_start, var_end,
is_decl) == FAIL)
return FAIL;
}
}
if (declare_error)
{
vim9_declare_error(lhs->lhs_name);
return FAIL;
}
return OK;
}
/*
* When compiling a LHS variable name, for a class or an object, set the LHS
* member type.
*/
static int
compile_lhs_set_oc_member_type(
cctx_T *cctx,
lhs_T *lhs,
char_u *var_start)
{
class_T *cl = lhs->lhs_type->tt_class;
int is_object = lhs->lhs_type->tt_type == VAR_OBJECT;
char_u *name = var_start + lhs->lhs_varlen + 1;
size_t namelen = lhs->lhs_end - var_start - lhs->lhs_varlen - 1;
ocmember_T *m = member_lookup(cl, lhs->lhs_type->tt_type,
name, namelen, &lhs->lhs_member_idx);
if (m == NULL)
{
member_not_found_msg(cl, lhs->lhs_type->tt_type, name, namelen);
return FAIL;
}
if (IS_ENUM(cl))
{
if (!inside_class(cctx, cl))
{
semsg(_(e_enumvalue_str_cannot_be_modified),
cl->class_name, m->ocm_name);
return FAIL;
}
if (lhs->lhs_type->tt_type == VAR_OBJECT &&
lhs->lhs_member_idx < 2)
{
char *msg = lhs->lhs_member_idx == 0 ?
e_enum_str_name_cannot_be_modified :
e_enum_str_ordinal_cannot_be_modified;
semsg(_(msg), cl->class_name);
return FAIL;
}
}
// If it is private member variable, then accessing it outside the
// class is not allowed.
// If it is a read only class variable, then it can be modified
// only inside the class where it is defined.
if ((m->ocm_access != VIM_ACCESS_ALL) &&
((is_object && !inside_class(cctx, cl))
|| (!is_object && cctx->ctx_ufunc->uf_class != cl)))
{
char *msg = (m->ocm_access == VIM_ACCESS_PRIVATE)
? e_cannot_access_protected_variable_str
: e_variable_is_not_writable_str;
emsg_var_cl_define(msg, m->ocm_name, 0, cl);
return FAIL;
}
if (!IS_CONSTRUCTOR_METHOD(cctx->ctx_ufunc)
&& oc_var_check_ro(cl, m))
return FAIL;
lhs->lhs_member_type = m->ocm_type;
return OK;
}
/*
* When compiling a LHS variable, set the LHS variable type.
*/
static int
compile_lhs_set_type(cctx_T *cctx, lhs_T *lhs, char_u *var_end, int is_decl)
{
if (is_decl && *skipwhite(var_end) == ':')
{
char_u *p;
// parse optional type: "let var: type = expr"
if (VIM_ISWHITE(*var_end))
{
semsg(_(e_no_white_space_allowed_before_colon_str), var_end);
return FAIL;
}
if (!VIM_ISWHITE(var_end[1]))
{
semsg(_(e_white_space_required_after_str_str), ":", var_end);
return FAIL;
}
p = skipwhite(var_end + 1);
lhs->lhs_type = parse_type(&p, cctx->ctx_type_list, TRUE);
if (lhs->lhs_type == NULL)
return FAIL;
lhs->lhs_has_type = TRUE;
lhs->lhs_end = p;
}
else if (lhs->lhs_lvar != NULL)
lhs->lhs_type = lhs->lhs_lvar->lv_type;
return OK;
}
/*
* Returns TRUE if "lhs" is a concatenable string.
*/
static int
lhs_concatenable(lhs_T *lhs)
{
return lhs->lhs_dest == dest_global
|| lhs->lhs_has_index
|| lhs->lhs_type->tt_type == VAR_STRING
|| lhs->lhs_type->tt_type == VAR_ANY;
}
/*
* Create a new local variable when compiling a LHS variable.
*/
static int
compile_lhs_new_local_var(
cctx_T *cctx,
lhs_T *lhs,
char_u *var_start,
int cmdidx,
int oplen,
int is_decl,
int has_cmd,
int heredoc)
{
if (oplen > 1 && !heredoc)
{
// +=, /=, etc. require an existing variable
semsg(_(e_cannot_use_operator_on_new_variable_str), lhs->lhs_name);
return FAIL;
}
if (!is_decl || (lhs->lhs_has_index && !has_cmd
&& cctx->ctx_skip != SKIP_YES))
{
semsg(_(e_unknown_variable_str), lhs->lhs_name);
return FAIL;
}
// Check the name is valid for a funcref.
if (lhs->lhs_type->tt_type == VAR_FUNC
|| lhs->lhs_type->tt_type == VAR_PARTIAL)
{
if (var_wrong_func_name(lhs->lhs_name, TRUE))
return FAIL;
}
// New local variable.
int assign;
switch (cmdidx)
{
case CMD_final:
assign = ASSIGN_FINAL; break;
case CMD_const:
assign = ASSIGN_CONST; break;
default:
assign = ASSIGN_VAR; break;
}
lhs->lhs_lvar = reserve_local(cctx, var_start, lhs->lhs_varlen, assign,
lhs->lhs_type);
if (lhs->lhs_lvar == NULL)
return FAIL;
lhs->lhs_new_local = TRUE;
return OK;
}
/*
* When compiling a LHS variable name, set the LHS member type.
*/
static int
compile_lhs_set_member_type(
cctx_T *cctx,
lhs_T *lhs,
char_u *var_start,
int is_decl,
int has_cmd)
{
lhs->lhs_member_type = lhs->lhs_type;
if (!lhs->lhs_has_index)
return OK;
char_u *after = var_start + lhs->lhs_varlen;
char_u *p;
// Something follows after the variable: "var[idx]" or "var.key".
if (is_decl && cctx->ctx_skip != SKIP_YES)
{
if (has_cmd)
emsg(_(e_cannot_use_index_when_declaring_variable));
else
semsg(_(e_unknown_variable_str), lhs->lhs_name);
return FAIL;
}
// Now: var_start[lhs->lhs_varlen] is '[' or '.'
// Only the last index is used below, if there are others
// before it generate code for the expression. Thus for
// "ll[1][2]" the expression is "ll[1]" and "[2]" is the index.
for (;;)
{
p = skip_index(after);
if (*p != '[' && *p != '.')
{
lhs->lhs_varlen_total = p - var_start;
break;
}
after = p;
}
if (after > var_start + lhs->lhs_varlen)
{
lhs->lhs_varlen = after - var_start;
lhs->lhs_dest = dest_expr;
// We don't know the type before evaluating the expression,
// use "any" until then.
lhs->lhs_type = &t_any;
}
int use_class = lhs->lhs_type != NULL
&& (lhs->lhs_type->tt_type == VAR_CLASS
|| lhs->lhs_type->tt_type == VAR_OBJECT);
if (lhs->lhs_type == NULL
|| (use_class ? lhs->lhs_type->tt_class == NULL
: lhs->lhs_type->tt_member == NULL))
{
lhs->lhs_member_type = &t_any;
}
else if (use_class)
{
// for an object or class member get the type of the member
if (compile_lhs_set_oc_member_type(cctx, lhs, var_start) == FAIL)
return FAIL;
}
else
lhs->lhs_member_type = lhs->lhs_type->tt_member;
return OK;
}
/*
* Figure out the LHS type and other properties for an assignment or one item
* of ":unlet" with an index.
* Returns OK or FAIL.
*/
int
compile_lhs(
char_u *var_start,
lhs_T *lhs,
cmdidx_T cmdidx,
int heredoc,
int has_cmd, // "var" before "var_start"
int oplen,
cctx_T *cctx)
{
char_u *var_end = NULL;
int is_decl = is_decl_command(cmdidx);
if (lhs_init(lhs, var_start, is_decl, heredoc, &var_end) == FAIL)
return FAIL;
if (cctx->ctx_skip != SKIP_YES)
{
// compile the LHS destination
if (compile_lhs_var_dest(cctx, lhs, cmdidx, var_start, var_end,
is_decl) == FAIL)
return FAIL;
}
// handle "a:name" as a name, not index "name" in "a"
if (lhs->lhs_varlen > 1 || var_start[lhs->lhs_varlen] != ':')
var_end = lhs->lhs_dest_end;
if (lhs->lhs_dest != dest_option && lhs->lhs_dest != dest_func_option)
{
// set the LHS variable type
if (compile_lhs_set_type(cctx, lhs, var_end, is_decl) == FAIL)
return FAIL;
}
if (oplen == 3 && !heredoc && !lhs_concatenable(lhs))
{
emsg(_(e_can_only_concatenate_to_string));
return FAIL;
}
if (lhs->lhs_lvar == NULL && lhs->lhs_dest == dest_local
&& cctx->ctx_skip != SKIP_YES)
{
if (compile_lhs_new_local_var(cctx, lhs, var_start, cmdidx, oplen,
is_decl, has_cmd, heredoc) == FAIL)
return FAIL;
}
if (compile_lhs_set_member_type(cctx, lhs, var_start, is_decl, has_cmd)
== FAIL)
return FAIL;
return OK;
}
/*
* Figure out the LHS and check a few errors.
*/
int
compile_assign_lhs(
char_u *var_start,
lhs_T *lhs,
cmdidx_T cmdidx,
int is_decl,
int heredoc,
int has_cmd, // "var" before "var_start"
int oplen,
cctx_T *cctx)
{
if (compile_lhs(var_start, lhs, cmdidx, heredoc, has_cmd, oplen, cctx)
== FAIL)
return FAIL;
if (!lhs->lhs_has_index && lhs->lhs_lvar == &lhs->lhs_arg_lvar)
{
semsg(_(e_cannot_assign_to_argument_str), lhs->lhs_name);
return FAIL;
}
if (!is_decl && lhs->lhs_lvar != NULL
&& lhs->lhs_lvar->lv_const != ASSIGN_VAR
&& !lhs->lhs_has_index)
{
semsg(_(e_cannot_assign_to_constant_str), lhs->lhs_name);
return FAIL;
}
return OK;
}
/*
* Return TRUE if "lhs" has a range index: "[expr : expr]".
*/
static int
has_list_index(char_u *idx_start, cctx_T *cctx)
{
char_u *p = idx_start;
int save_skip;
if (*p != '[')
return FALSE;
p = skipwhite(p + 1);
if (*p == ':')
return TRUE;
save_skip = cctx->ctx_skip;
cctx->ctx_skip = SKIP_YES;
(void)compile_expr0(&p, cctx);
cctx->ctx_skip = save_skip;
return *skipwhite(p) == ':';
}
/*
* For an assignment with an index, compile the "idx" in "var[idx]" or "key" in
* "var.key".
*/
static int
compile_assign_index(
char_u *var_start,
lhs_T *lhs,
int *range,
cctx_T *cctx)
{
size_t varlen = lhs->lhs_varlen;
char_u *p;
int r = OK;
int need_white_before = TRUE;
int empty_second;
p = var_start + varlen;
if (*p == '[')
{
p = skipwhite(p + 1);
if (*p == ':')
{
// empty first index, push zero
r = generate_PUSHNR(cctx, 0);
need_white_before = FALSE;
}
else
r = compile_expr0(&p, cctx);
if (r == OK && *skipwhite(p) == ':')
{
// unlet var[idx : idx]
// blob[idx : idx] = value
*range = TRUE;
p = skipwhite(p);
empty_second = *skipwhite(p + 1) == ']';
if ((need_white_before && !IS_WHITE_OR_NUL(p[-1]))
|| (!empty_second && !IS_WHITE_OR_NUL(p[1])))
{
semsg(_(e_white_space_required_before_and_after_str_at_str),
":", p);
return FAIL;
}
p = skipwhite(p + 1);
if (*p == ']')
// empty second index, push "none"
r = generate_PUSHSPEC(cctx, VVAL_NONE);
else
r = compile_expr0(&p, cctx);
}
if (r == OK && *skipwhite(p) != ']')
{
// this should not happen
emsg(_(e_missing_closing_square_brace));
r = FAIL;
}
}
else if (lhs->lhs_member_idx >= 0)
{
// object member index
r = generate_PUSHNR(cctx, lhs->lhs_member_idx);
}
else // if (*p == '.')
{
char_u *key_end = to_name_end(p + 1, TRUE);
char_u *key = vim_strnsave(p + 1, key_end - p - 1);
r = generate_PUSHS(cctx, &key);
}
return r;
}
/*
* For a LHS with an index, load the variable to be indexed.
*/
static int
compile_load_lhs(
lhs_T *lhs,
char_u *var_start,
type_T *rhs_type,
cctx_T *cctx)
{
if (lhs->lhs_dest == dest_expr)
{
size_t varlen = lhs->lhs_varlen;
int c = var_start[varlen];
int lines_len = cctx->ctx_ufunc->uf_lines.ga_len;
int res;
// Evaluate "ll[expr]" of "ll[expr][idx]". End the line with a NUL and
// limit the lines array length to avoid skipping to a following line.
var_start[varlen] = NUL;
cctx->ctx_ufunc->uf_lines.ga_len = cctx->ctx_lnum + 1;
char_u *p = var_start;
res = compile_expr0(&p, cctx);
var_start[varlen] = c;
cctx->ctx_ufunc->uf_lines.ga_len = lines_len;
if (res == FAIL || p != var_start + varlen)
{
// this should not happen
if (res != FAIL)
emsg(_(e_missing_closing_square_brace));
return FAIL;
}
lhs->lhs_type = cctx->ctx_type_stack.ga_len == 0 ? &t_void
: get_type_on_stack(cctx, 0);
if (lhs->lhs_type->tt_type == VAR_CLASS
|| lhs->lhs_type->tt_type == VAR_OBJECT)
{
// Check whether the class or object variable is modifiable
if (!lhs_class_member_modifiable(lhs, var_start, cctx))
return FAIL;
}
// Now we can properly check the type. The variable is indexed, thus
// we need the member type. For a class or object we don't know the
// type yet, it depends on what member is used.
// The top item in the stack is the Dict, followed by the key and then
// the type of the value.
vartype_T vartype = lhs->lhs_type->tt_type;
type_T *member_type = lhs->lhs_type->tt_member;
if (rhs_type != NULL && member_type != NULL
&& vartype != VAR_OBJECT && vartype != VAR_CLASS
&& rhs_type != &t_void
&& need_type(rhs_type, member_type, FALSE,
-3, 0, cctx, FALSE, FALSE) == FAIL)
return FAIL;
return OK;
}
return generate_loadvar(cctx, lhs);
}
/*
* Produce code for loading "lhs" and also take care of an index.
* Return OK/FAIL.
*/
int
compile_load_lhs_with_index(lhs_T *lhs, char_u *var_start, cctx_T *cctx)
{
if (lhs->lhs_type->tt_type == VAR_OBJECT)
{
// "this.value": load "this" object and get the value at index for an
// object or class member get the type of the member.
// Also for "obj.value".
char_u *dot = vim_strchr(var_start, '.');
if (dot == NULL)
{
semsg(_(e_missing_dot_after_object_str), lhs->lhs_name);
return FAIL;
}
class_T *cl = lhs->lhs_type->tt_class;
type_T *type = oc_member_type(cl, TRUE, dot + 1,
lhs->lhs_end, &lhs->lhs_member_idx);
if (lhs->lhs_member_idx < 0)
return FAIL;
if (dot - var_start == 4 && STRNCMP(var_start, "this", 4) == 0)
{
// load "this"
lvar_T *lvar = lhs->lhs_lvar;
int rc;
if (lvar->lv_from_outer > 0)
rc = generate_LOADOUTER(cctx, lvar->lv_idx,
lvar->lv_from_outer, lvar->lv_loop_depth,
lvar->lv_loop_idx, type);
else
rc = generate_LOAD(cctx, ISN_LOAD, lvar->lv_idx, NULL, type);
if (rc == FAIL)
return FAIL;
}
else
{
// load object variable or argument
if (compile_load_lhs(lhs, var_start, lhs->lhs_type, cctx) == FAIL)
return FAIL;
}
if (IS_INTERFACE(cl))
return generate_GET_ITF_MEMBER(cctx, cl, lhs->lhs_member_idx, type);
return generate_GET_OBJ_MEMBER(cctx, lhs->lhs_member_idx, type);
}
else if (lhs->lhs_type->tt_type == VAR_CLASS)
{
// "<classname>.value": load class variable "classname.value"
char_u *dot = vim_strchr(var_start, '.');
if (dot == NULL)
{
check_type_is_value(lhs->lhs_type);
return FAIL;
}
class_T *cl = lhs->lhs_type->tt_class;
ocmember_T *m = class_member_lookup(cl, dot + 1,
lhs->lhs_end - dot - 1,
&lhs->lhs_member_idx);
if (m == NULL)
return FAIL;
return generate_CLASSMEMBER(cctx, TRUE, cl, lhs->lhs_member_idx);
}
if (compile_load_lhs(lhs, var_start, NULL, cctx) == FAIL)
return FAIL;
if (lhs->lhs_has_index)
{
int range = FALSE;
// Get member from list or dict. First compile the
// index value.
if (compile_assign_index(var_start, lhs, &range, cctx) == FAIL)
return FAIL;
if (range)
{
semsg(_(e_cannot_use_range_with_assignment_operator_str),
var_start);
return FAIL;
}
// Get the member.
if (compile_member(FALSE, NULL, cctx) == FAIL)
return FAIL;
}
return OK;
}
/*
* Assignment to a list or dict member, or ":unlet" for the item, using the
* information in "lhs".
* Returns OK or FAIL.
*/
int
compile_assign_unlet(
char_u *var_start,
lhs_T *lhs,
int is_assign,
type_T *rhs_type,
cctx_T *cctx)
{
vartype_T dest_type;
int range = FALSE;
if (compile_assign_index(var_start, lhs, &range, cctx) == FAIL)
return FAIL;
if (is_assign && range
&& lhs->lhs_type->tt_type != VAR_LIST
&& lhs->lhs_type != &t_blob
&& lhs->lhs_type != &t_any)
{
semsg(_(e_cannot_use_range_with_assignment_str), var_start);
return FAIL;
}
if (lhs->lhs_type == NULL || lhs->lhs_type == &t_any)
{
// Index on variable of unknown type: check at runtime.
dest_type = VAR_ANY;
}
else
{
dest_type = lhs->lhs_type->tt_type;
if (dest_type == VAR_DICT && range)
{
emsg(_(e_cannot_use_range_with_dictionary));
return FAIL;
}
if (dest_type == VAR_DICT
&& may_generate_2STRING(-1, TOSTRING_NONE, cctx) == FAIL)
return FAIL;
if (dest_type == VAR_LIST || dest_type == VAR_BLOB)
{
type_T *type;
if (range)
{
type = get_type_on_stack(cctx, 1);
if (need_type(type, &t_number, FALSE,
-2, 0, cctx, FALSE, FALSE) == FAIL)
return FAIL;
}
type = get_type_on_stack(cctx, 0);
if ((dest_type != VAR_BLOB && type->tt_type != VAR_SPECIAL)
&& need_type(type, &t_number, FALSE,
-1, 0, cctx, FALSE, FALSE) == FAIL)
return FAIL;
}
}
if (cctx->ctx_skip == SKIP_YES)
return OK;
// Load the dict, list or object. On the stack we then have:
// - value (for assignment, not for :unlet)
// - index
// - for [a : b] second index
// - variable
if (compile_load_lhs(lhs, var_start, rhs_type, cctx) == FAIL)
return FAIL;
if (dest_type == VAR_LIST
|| dest_type == VAR_DICT
|| dest_type == VAR_BLOB
|| dest_type == VAR_CLASS
|| dest_type == VAR_OBJECT
|| dest_type == VAR_ANY)
{
if (is_assign)
{
if (range)
{
if (generate_instr_drop(cctx, ISN_STORERANGE, 4) == NULL)
return FAIL;
}
else
{
isn_T *isn = generate_instr_drop(cctx, ISN_STOREINDEX, 3);
if (isn == NULL)
return FAIL;
isn->isn_arg.storeindex.si_vartype = dest_type;
isn->isn_arg.storeindex.si_class = NULL;
if (dest_type == VAR_OBJECT)
{
class_T *cl = lhs->lhs_type->tt_class;
if (IS_INTERFACE(cl))
{
// "this.value": load "this" object and get the value
// at index for an object or class member get the type
// of the member
isn->isn_arg.storeindex.si_class = cl;
++cl->class_refcount;
}
}
}
}
else if (range)
{
if (generate_instr_drop(cctx, ISN_UNLETRANGE, 3) == NULL)
return FAIL;
}
else
{
if (generate_instr_drop(cctx, ISN_UNLETINDEX, 2) == NULL)
return FAIL;
}
}
else
{
emsg(_(e_indexable_type_required));
return FAIL;
}
return OK;
}
/*
* Generate an instruction to push the default value for "vartype".
* if "dest_local" is TRUE then for some types no instruction is generated.
* "skip_store" is set to TRUE if no PUSH instruction is generated.
* Returns OK or FAIL.
*/
static int
push_default_value(
cctx_T *cctx,
vartype_T vartype,
int dest_is_local,
int *skip_store)
{
int r = OK;
switch (vartype)
{
case VAR_BOOL:
r = generate_PUSHBOOL(cctx, VVAL_FALSE);
break;
case VAR_FLOAT:
r = generate_PUSHF(cctx, 0.0);
break;
case VAR_STRING:
r = generate_PUSHS(cctx, NULL);
break;
case VAR_BLOB:
r = generate_PUSHBLOB(cctx, blob_alloc());
break;
case VAR_FUNC:
r = generate_PUSHFUNC(cctx, NULL, &t_func_void, TRUE);
break;
case VAR_LIST:
r = generate_NEWLIST(cctx, 0, FALSE);
break;
case VAR_DICT:
r = generate_NEWDICT(cctx, 0, FALSE);
break;
case VAR_JOB:
r = generate_PUSHJOB(cctx);
break;
case VAR_CHANNEL:
r = generate_PUSHCHANNEL(cctx);
break;
case VAR_OBJECT:
r = generate_PUSHOBJ(cctx);
break;
case VAR_NUMBER:
case VAR_UNKNOWN:
case VAR_ANY:
case VAR_PARTIAL:
case VAR_VOID:
case VAR_INSTR:
case VAR_CLASS:
case VAR_TYPEALIAS:
case VAR_SPECIAL: // cannot happen
// This is skipped for local variables, they are always
// initialized to zero. But in a "for" or "while" loop
// the value may have been changed.
if (dest_is_local && !inside_loop_scope(cctx))
*skip_store = TRUE;
else
r = generate_PUSHNR(cctx, 0);
break;
}
return r;
}
/*
* Compile assignment context. Used when compiling an assignment statement.
*/
typedef struct cac_S cac_T;
struct cac_S
{
cmdidx_T cac_cmdidx; // assignment command
char_u *cac_nextc; // next character to parse
lhs_T cac_lhs; // lhs of the assignment
type_T *cac_rhs_type; // rhs type of an assignment
char_u *cac_op; // assignment operator
int cac_oplen; // assignment operator length
char_u *cac_var_start; // start of the variable names
char_u *cac_var_end; // end of the variable names
int cac_var_count; // number of variables in assignment
int cac_var_idx; // variable index in a list
int cac_semicolon; // semicolon in [var1, var2; var3]
garray_T *cac_instr;
int cac_instr_count;
int cac_incdec;
int cac_did_generate_slice;
int cac_is_decl;
int cac_is_const;
int cac_start_lnum;
type_T *cac_inferred_type;
int cac_skip_store;
};
/*
* Initialize the compile assignment context.
*/
static void
compile_assign_context_init(cac_T *cac, cctx_T *cctx, int cmdidx, char_u *arg)
{
CLEAR_FIELD(*cac);
cac->cac_cmdidx = cmdidx;
cac->cac_instr = &cctx->ctx_instr;
cac->cac_rhs_type = &t_any;
cac->cac_is_decl = is_decl_command(cmdidx);
cac->cac_start_lnum = SOURCING_LNUM;
cac->cac_instr_count = -1;
cac->cac_var_end = arg;
}
/*
* Compile an object member variable assignment in the arguments passed to a
* class new() method.
*
* Instruction format:
*
* ifargisset <n> this.<varname> = <value>
*
* where <n> is the index of the default argument.
*
* Generates the ISN_JUMP_IF_ARG_NOT_SET instruction to skip the assignment if
* the value is passed as an argument to the new() method call.
*
* Returns OK on success.
*/
static int
compile_assign_obj_new_arg(char_u **argp, cctx_T *cctx)
{
char_u *arg = *argp;
arg += 11; // skip "ifargisset"
int def_arg_idx = getdigits(&arg);
arg = skipwhite(arg);
// Use a JUMP_IF_ARG_NOT_SET instruction to skip if the value was not
// given and the default value is "v:none".
int stack_offset = STACK_FRAME_SIZE +
(cctx->ctx_ufunc->uf_va_name != NULL ? 1 : 0);
int def_arg_count = cctx->ctx_ufunc->uf_def_args.ga_len;
int arg_offset = def_arg_idx - def_arg_count - stack_offset;
if (generate_JUMP_IF_ARG(cctx, ISN_JUMP_IF_ARG_NOT_SET,
arg_offset) == FAIL)
return FAIL;
*argp = arg;
return OK;
}
/*
* Translate the increment (++) and decrement (--) operators to the
* corresponding compound operators (+= or -=).
*
* Returns OK on success and FAIL on syntax error.
*/
static int
translate_incdec_op(exarg_T *eap, cac_T *cac)
{
if (VIM_ISWHITE(eap->cmd[2]))
{
semsg(_(e_no_white_space_allowed_after_str_str),
eap->cmdidx == CMD_increment ? "++" : "--", eap->cmd);
return FAIL;
}
cac->cac_op = (char_u *)(eap->cmdidx == CMD_increment ? "+=" : "-=");
cac->cac_oplen = 2;
cac->cac_incdec = TRUE;
return OK;
}
/*
* Process the operator in an assignment statement.
*/
static int
compile_assign_process_operator(
exarg_T *eap,
char_u *arg,
cac_T *cac,
int *heredoc,
char_u **retstr)
{
*retstr = NULL;
if (eap->cmdidx == CMD_increment || eap->cmdidx == CMD_decrement)
// Change an unary operator to a compound operator
return translate_incdec_op(eap, cac);
char_u *sp = cac->cac_nextc;
cac->cac_nextc = skipwhite(cac->cac_nextc);
cac->cac_op = cac->cac_nextc;
cac->cac_oplen = assignment_len(cac->cac_nextc, heredoc);
if (cac->cac_var_count > 0 && cac->cac_oplen == 0)
{
// can be something like "[1, 2]->func()"
*retstr = arg;
return FAIL;
}
// need white space before and after the operator
if (cac->cac_oplen > 0 && (!VIM_ISWHITE(*sp)
|| !IS_WHITE_OR_NUL(cac->cac_op[cac->cac_oplen])))
{
error_white_both(cac->cac_op, cac->cac_oplen);
return FAIL;
}
return OK;
}
/*
* Find the start of an assignment statement.
*/
static char_u *
compile_assign_compute_start(char_u *arg, int var_count)
{
if (var_count > 0)
// [var1, var2] = [val1, val2]
// skip over the "["
return skipwhite(arg + 1);
return arg;
}
/*
* Parse a heredoc assignment starting at "p". Returns a pointer to the
* beginning of the heredoc content.
*/
static char_u *
parse_heredoc_assignment(exarg_T *eap, cctx_T *cctx, cac_T *cac)
{
// [let] varname =<< [trim] {end}
eap->ea_getline = exarg_getline;
eap->cookie = cctx;
list_T *l = heredoc_get(eap, cac->cac_nextc + 3, FALSE, TRUE);
if (l == NULL)
return NULL;
list_free(l);
cac->cac_nextc += STRLEN(cac->cac_nextc);
return cac->cac_nextc;
}
/*
* Check the type of a RHS expression in a list assignment statement.
* The RHS expression is already compiled. So the type is on the stack.
*/
static int
compile_assign_list_check_rhs_type(cctx_T *cctx, cac_T *cac)
{
type_T *stacktype;
stacktype = cctx->ctx_type_stack.ga_len == 0 ? &t_void
: get_type_on_stack(cctx, 0);
if (stacktype->tt_type == VAR_VOID)
{
emsg(_(e_cannot_use_void_value));
return FAIL;
}
if (need_type(stacktype, &t_list_any, FALSE, -1, 0, cctx,
FALSE, FALSE) == FAIL)
return FAIL;
if (stacktype->tt_member != NULL)
cac->cac_rhs_type = stacktype->tt_member;
return OK;
}
/*
* In a list assignment statement, if a constant list was used, check the
* length. Returns OK if the length check succeeds. Returns FAIL otherwise.
*/
static int
compile_assign_list_check_length(cctx_T *cctx, cac_T *cac)
{
int needed_list_len;
int did_check = FALSE;
needed_list_len = cac->cac_semicolon
? cac->cac_var_count - 1
: cac->cac_var_count;
if (cac->cac_instr->ga_len > 0)
{
isn_T *isn = ((isn_T *)cac->cac_instr->ga_data) +
cac->cac_instr->ga_len - 1;
if (isn->isn_type == ISN_NEWLIST)
{
did_check = TRUE;
if (cac->cac_semicolon ?
isn->isn_arg.number < needed_list_len
: isn->isn_arg.number != needed_list_len)
{
semsg(_(e_expected_nr_items_but_got_nr),
needed_list_len, (int)isn->isn_arg.number);
return FAIL;
}
}
}
if (!did_check)
generate_CHECKLEN(cctx, needed_list_len, cac->cac_semicolon);
return OK;
}
/*
* Evaluate the expression for "[var, var] = expr" assignment.
* A line break may follow the assignment operator "=".
*/
static char_u *
compile_assign_list_expr(cctx_T *cctx, cac_T *cac)
{
char_u *whitep;
whitep = cac->cac_op + cac->cac_oplen;
if (may_get_next_line_error(whitep, &cac->cac_nextc, cctx) == FAIL)
return NULL;
// compile RHS expression
if (compile_expr0(&cac->cac_nextc, cctx) == FAIL)
return NULL;
if (cctx->ctx_skip == SKIP_YES)
// no need to parse more when skipping
return cac->cac_nextc;
if (compile_assign_list_check_rhs_type(cctx, cac) == FAIL)
return NULL;
// If a constant list was used we can check the length right here.
if (compile_assign_list_check_length(cctx, cac) == FAIL)
return FAIL;
return cac->cac_nextc;
}
/*
* Find and return the end of a heredoc or a list of variables assignment
* statement. For a single variable assignment statement, returns the current
* end.
* Returns NULL on failure.
*/
static char_u *
compile_assign_compute_end(
exarg_T *eap,
cctx_T *cctx,
cac_T *cac,
int heredoc)
{
if (heredoc)
{
cac->cac_nextc = parse_heredoc_assignment(eap, cctx, cac);
return cac->cac_nextc;
}
if (cac->cac_var_count > 0)
{
// for "[var, var] = expr" evaluate the expression. The list of
// variables are processed later.
// A line break may follow the "=".
cac->cac_nextc = compile_assign_list_expr(cctx, cac);
return cac->cac_nextc;
}
return cac->cac_var_end;
}
/*
* For "var = expr" evaluate the expression.
*/
static int
compile_assign_single_eval_expr(cctx_T *cctx, cac_T *cac)
{
int ret = OK;
char_u *whitep;
lhs_T *lhs = &cac->cac_lhs;
// Compile the expression.
if (cac->cac_incdec)
return generate_PUSHNR(cctx, 1);
// Temporarily hide the new local variable here, it is
// not available to this expression.
if (lhs->lhs_new_local)
--cctx->ctx_locals.ga_len;
whitep = cac->cac_op + cac->cac_oplen;
if (may_get_next_line_error(whitep, &cac->cac_nextc, cctx) == FAIL)
{
if (lhs->lhs_new_local)
++cctx->ctx_locals.ga_len;
return FAIL;
}
ret = compile_expr0_ext(&cac->cac_nextc, cctx, &cac->cac_is_const);
if (lhs->lhs_new_local)
++cctx->ctx_locals.ga_len;
return ret;
}
/*
* When compiling an assignment, set the LHS type to the RHS type.
*/
static int
compile_assign_set_lhs_type_from_rhs(
cctx_T *cctx,
cac_T *cac,
lhs_T *lhs,
type_T *rhs_type)
{
if (rhs_type->tt_type == VAR_VOID)
{
emsg(_(e_cannot_use_void_value));
return FAIL;
}
type_T *type;
// An empty list or dict has a &t_unknown member, for a variable that
// implies &t_any.
if (rhs_type == &t_list_empty)
type = &t_list_any;
else if (rhs_type == &t_dict_empty)
type = &t_dict_any;
else if (rhs_type == &t_unknown)
type = &t_any;
else
{
type = rhs_type;
cac->cac_inferred_type = rhs_type;
}
set_var_type(lhs->lhs_lvar, type, cctx);
return OK;
}
/*
* Returns TRUE if the "rhs_type" can be assigned to the "lhs" variable.
* Used when compiling an assignment statement.
*/
static int
compile_assign_valid_rhs_type(
cctx_T *cctx,
cac_T *cac,
lhs_T *lhs,
type_T *rhs_type)
{
type_T *use_type = lhs->lhs_lvar->lv_type;
where_T where = WHERE_INIT;
// Without operator check type here, otherwise below.
// Use the line number of the assignment.
SOURCING_LNUM = cac->cac_start_lnum;
if (cac->cac_var_count > 0)
{
where.wt_index = cac->cac_var_idx + 1;
where.wt_kind = WT_VARIABLE;
}
// If assigning to a list or dict member, use the member type.
// Not for "list[:] =".
if (lhs->lhs_has_index &&
!has_list_index(cac->cac_var_start + lhs->lhs_varlen, cctx))
use_type = lhs->lhs_member_type;
if (need_type_where(rhs_type, use_type, FALSE, -1, where, cctx, FALSE,
cac->cac_is_const) == FAIL)
return FALSE;
return TRUE;
}
/*
* Compare the LHS type with the RHS type in an assignment.
*/
static int
compile_assign_check_type(cctx_T *cctx, cac_T *cac)
{
lhs_T *lhs = &cac->cac_lhs;
type_T *rhs_type;
rhs_type = cctx->ctx_type_stack.ga_len == 0
? &t_void
: get_type_on_stack(cctx, 0);
cac->cac_rhs_type = rhs_type;
if (check_type_is_value(rhs_type) == FAIL)
return FAIL;
if (lhs->lhs_lvar != NULL && (cac->cac_is_decl || !lhs->lhs_has_type))
{
if (rhs_type->tt_type == VAR_FUNC
|| rhs_type->tt_type == VAR_PARTIAL)
{
// Make sure the variable name can be used as a funcref
if (!lhs->lhs_has_index
&& var_wrong_func_name(lhs->lhs_name, TRUE))
return FAIL;
}
if (lhs->lhs_new_local && !lhs->lhs_has_type)
{
// The LHS variable doesn't have a type. Set it to the RHS type.
if (compile_assign_set_lhs_type_from_rhs(cctx, cac, lhs, rhs_type)
== FAIL)
return FAIL;
}
else if (*cac->cac_op == '=')
{
if (!compile_assign_valid_rhs_type(cctx, cac, lhs, rhs_type))
return FAIL;
}
}
else
{
// Assigning to a register using @r = "abc"
type_T *lhs_type = lhs->lhs_member_type;
// Special case: assigning to @# can use a number or a string.
// Also: can assign a number to a float.
if ((lhs_type == &t_number_or_string || lhs_type == &t_float)
&& rhs_type->tt_type == VAR_NUMBER)
lhs_type = &t_number;
if (*cac->cac_nextc != '=')
{
if (need_type(rhs_type, lhs_type, FALSE, -1, 0, cctx, FALSE,
FALSE) == FAIL)
return FAIL;
}
}
return OK;
}
/*
* Compile the RHS expression in an assignment statement and generate the
* instructions.
*/
static int
compile_assign_rhs_expr(cctx_T *cctx, cac_T *cac)
{
cac->cac_is_const = FALSE;
// for "+=", "*=", "..=" etc. first load the current value
if (*cac->cac_op != '='
&& compile_load_lhs_with_index(&cac->cac_lhs, cac->cac_var_start,
cctx) == FAIL)
return FAIL;
// For "var = expr" evaluate the expression.
if (cac->cac_var_count == 0)
{
int ret;
// Compile the expression.
cac->cac_instr_count = cac->cac_instr->ga_len;
ret = compile_assign_single_eval_expr(cctx, cac);
if (ret == FAIL)
return FAIL;
}
else if (cac->cac_semicolon && cac->cac_var_idx == cac->cac_var_count - 1)
{
// For "[var; var] = expr" get the rest of the list
cac->cac_did_generate_slice = TRUE;
if (generate_SLICE(cctx, cac->cac_var_count - 1) == FAIL)
return FAIL;
}
else
{
// For "[var, var] = expr" get the "var_idx" item from the
// list.
int with_op = *cac->cac_op != '=';
if (generate_GETITEM(cctx, cac->cac_var_idx, with_op) == FAIL)
return FAIL;
}
if (compile_assign_check_type(cctx, cac) == FAIL)
return FAIL;
return OK;
}
/*
* Compile the RHS expression in an assignment
*/
static int
compile_assign_rhs(cctx_T *cctx, cac_T *cac)
{
lhs_T *lhs = &cac->cac_lhs;
if (cctx->ctx_skip == SKIP_YES)
{
if (cac->cac_oplen > 0 && cac->cac_var_count == 0)
{
// skip over the "=" and the expression
cac->cac_nextc = skipwhite(cac->cac_op + cac->cac_oplen);
(void)compile_expr0(&cac->cac_nextc, cctx);
}
return OK;
}
// If RHS is specified, then generate instructions for RHS expression
if (cac->cac_oplen > 0)
return compile_assign_rhs_expr(cctx, cac);
if (cac->cac_cmdidx == CMD_final)
{
emsg(_(e_final_requires_a_value));
return FAIL;
}
if (cac->cac_cmdidx == CMD_const)
{
emsg(_(e_const_requires_a_value));
return FAIL;
}
if (!lhs->lhs_has_type || lhs->lhs_dest == dest_option
|| lhs->lhs_dest == dest_func_option)
{
emsg(_(e_type_or_initialization_required));
return FAIL;
}
// variables are always initialized
if (GA_GROW_FAILS(cac->cac_instr, 1))
return FAIL;
cac->cac_instr_count = cac->cac_instr->ga_len;
return push_default_value(cctx, lhs->lhs_member_type->tt_type,
lhs->lhs_dest == dest_local,
&cac->cac_skip_store);
}
/*
* Compile a compound op assignment statement (+=, -=, *=, %=, etc.)
*/
static int
compile_assign_compound_op(cctx_T *cctx, cac_T *cac)
{
lhs_T *lhs = &cac->cac_lhs;
type_T *expected;
type_T *stacktype = NULL;
if (*cac->cac_op == '.')
{
if (may_generate_2STRING(-1, TOSTRING_NONE, cctx) == FAIL)
return FAIL;
}
else
{
expected = lhs->lhs_member_type;
stacktype = get_type_on_stack(cctx, 0);
if (
// If variable is float operation with number is OK.
!(expected == &t_float && (stacktype == &t_number
|| stacktype == &t_number_bool))
&& need_type(stacktype, expected, TRUE, -1, 0, cctx,
FALSE, FALSE) == FAIL)
return FAIL;
}
if (*cac->cac_op == '.')
{
if (generate_CONCAT(cctx, 2) == FAIL)
return FAIL;
}
else if (*cac->cac_op == '+')
{
if (generate_add_instr(cctx,
operator_type(lhs->lhs_member_type, stacktype),
lhs->lhs_member_type, stacktype,
EXPR_APPEND) == FAIL)
return FAIL;
}
else if (generate_two_op(cctx, cac->cac_op) == FAIL)
return FAIL;
return OK;
}
/*
* Generate the STORE and SETTYPE instructions for an assignment statement.
*/
static int
compile_assign_generate_store(cctx_T *cctx, cac_T *cac)
{
lhs_T *lhs = &cac->cac_lhs;
int save_lnum;
// Use the line number of the assignment for store instruction.
save_lnum = cctx->ctx_lnum;
cctx->ctx_lnum = cac->cac_start_lnum - 1;
if (lhs->lhs_has_index)
{
// Use the info in "lhs" to store the value at the index in the
// list, dict or object.
if (compile_assign_unlet(cac->cac_var_start, &cac->cac_lhs,
TRUE, cac->cac_rhs_type, cctx) == FAIL)
{
cctx->ctx_lnum = save_lnum;
return FAIL;
}
}
else
{
if (cac->cac_is_decl && cac->cac_cmdidx == CMD_const &&
(lhs->lhs_dest == dest_script
|| lhs->lhs_dest == dest_script_v9
|| lhs->lhs_dest == dest_global
|| lhs->lhs_dest == dest_local))
// ":const var": lock the value, but not referenced variables
generate_LOCKCONST(cctx);
type_T *inferred_type = cac->cac_inferred_type;
if ((lhs->lhs_type->tt_type == VAR_DICT
|| lhs->lhs_type->tt_type == VAR_LIST)
&& lhs->lhs_type->tt_member != NULL
&& lhs->lhs_type->tt_member != &t_any
&& lhs->lhs_type->tt_member != &t_unknown)
// Set the type in the list or dict, so that it can be checked,
// also in legacy script.
generate_SETTYPE(cctx, lhs->lhs_type);
else if (inferred_type != NULL
&& (inferred_type->tt_type == VAR_DICT
|| inferred_type->tt_type == VAR_LIST)
&& inferred_type->tt_member != NULL
&& inferred_type->tt_member != &t_unknown
&& inferred_type->tt_member != &t_any)
// Set the type in the list or dict, so that it can be checked,
// also in legacy script.
generate_SETTYPE(cctx, inferred_type);
if (!cac->cac_skip_store &&
generate_store_lhs(cctx, &cac->cac_lhs,
cac->cac_instr_count,
cac->cac_is_decl) == FAIL)
{
cctx->ctx_lnum = save_lnum;
return FAIL;
}
}
cctx->ctx_lnum = save_lnum;
return OK;
}
/*
* Process the variable(s) in an assignment statement
*/
static int
compile_assign_process_variables(
cctx_T *cctx,
cac_T *cac,
int cmdidx,
int heredoc,
int has_cmd,
int has_argisset_prefix,
int jump_instr_idx)
{
/*
* Loop over variables in "[var, var] = expr".
* For "name = expr" and "var name: type" this is done only once.
*/
for (cac->cac_var_idx = 0; cac->cac_var_idx == 0 ||
cac->cac_var_idx < cac->cac_var_count; cac->cac_var_idx++)
{
if (cac->cac_var_start[0] == '_'
&& !eval_isnamec(cac->cac_var_start[1]))
{
// Ignore underscore in "[a, _, b] = list".
if (cac->cac_var_count > 0)
{
cac->cac_var_start = skipwhite(cac->cac_var_start + 2);
continue;
}
emsg(_(e_cannot_use_underscore_here));
return FAIL;
}
vim_free(cac->cac_lhs.lhs_name);
/*
* Figure out the LHS type and other properties.
*/
if (compile_assign_lhs(cac->cac_var_start, &cac->cac_lhs, cmdidx,
cac->cac_is_decl, heredoc, has_cmd,
cac->cac_oplen, cctx) == FAIL)
return FAIL;
// Compile the RHS expression
if (heredoc)
{
SOURCING_LNUM = cac->cac_start_lnum;
if (cac->cac_lhs.lhs_has_type
&& need_type(&t_list_string, cac->cac_lhs.lhs_type,
FALSE, -1, 0, cctx, FALSE, FALSE) == FAIL)
return FAIL;
}
else
{
if (compile_assign_rhs(cctx, cac) == FAIL)
return FAIL;
if (cac->cac_var_count == 0)
cac->cac_var_end = cac->cac_nextc;
}
// no need to parse more when skipping
if (cctx->ctx_skip == SKIP_YES)
break;
if (cac->cac_oplen > 0 && *cac->cac_op != '=')
{
if (compile_assign_compound_op(cctx, cac) == FAIL)
return FAIL;
}
// generate the store instructions
if (compile_assign_generate_store(cctx, cac) == FAIL)
return FAIL;
if (cac->cac_var_idx + 1 < cac->cac_var_count)
cac->cac_var_start = skipwhite(cac->cac_lhs.lhs_end + 1);
if (has_argisset_prefix)
{
// set instruction index in JUMP_IF_ARG_SET to here
isn_T *isn = ((isn_T *)cac->cac_instr->ga_data) + jump_instr_idx;
isn->isn_arg.jumparg.jump_where = cac->cac_instr->ga_len;
}
}
return OK;
}
/*
* Compile declaration and assignment:
* "let name"
* "var name = expr"
* "final name = expr"
* "const name = expr"
* "name = expr"
* "arg" points to "name".
* "++arg" and "--arg"
* Return NULL for an error.
* Return "arg" if it does not look like a variable list.
*/
static char_u *
compile_assignment(
char_u *arg_start,
exarg_T *eap,
cmdidx_T cmdidx,
cctx_T *cctx)
{
cac_T cac;
char_u *arg = arg_start;
char_u *retstr = NULL;
int heredoc = FALSE;
int jump_instr_idx;
compile_assign_context_init(&cac, cctx, cmdidx, arg);
jump_instr_idx = cac.cac_instr->ga_len;
// process object variable initialization in a new() constructor method
int has_argisset_prefix = STRNCMP(arg, "ifargisset ", 11) == 0;
if (has_argisset_prefix &&
compile_assign_obj_new_arg(&arg, cctx) == FAIL)
goto theend;
// Skip over the "varname" or "[varname, varname]" to get to any "=".
cac.cac_nextc = skip_var_list(arg, TRUE, &cac.cac_var_count,
&cac.cac_semicolon, TRUE);
if (cac.cac_nextc == NULL)
return *arg == '[' ? arg : NULL;
if (compile_assign_process_operator(eap, arg, &cac, &heredoc,
&retstr) == FAIL)
return retstr;
// Compute the start of the assignment
cac.cac_var_start = compile_assign_compute_start(arg, cac.cac_var_count);
// Compute the end of the assignment
cac.cac_var_end = compile_assign_compute_end(eap, cctx, &cac, heredoc);
if (cac.cac_var_end == NULL)
return NULL;
int has_cmd = cac.cac_var_start > eap->cmd;
/* process the variable(s) */
if (compile_assign_process_variables(cctx, &cac, cmdidx, heredoc,
has_cmd, has_argisset_prefix,
jump_instr_idx) == FAIL)
goto theend;
// For "[var, var] = expr" drop the "expr" value.
// Also for "[var, var; _] = expr".
if (cctx->ctx_skip != SKIP_YES && cac.cac_var_count > 0 &&
(!cac.cac_semicolon || !cac.cac_did_generate_slice))
{
if (generate_instr_drop(cctx, ISN_DROP, 1) == NULL)
goto theend;
}
retstr = skipwhite(cac.cac_var_end);
theend:
vim_free(cac.cac_lhs.lhs_name);
return retstr;
}
/*
* Check for an assignment at "eap->cmd", compile it if found.
* Return NOTDONE if there is none, FAIL for failure, OK if done.
*/
static int
may_compile_assignment(exarg_T *eap, char_u **line, cctx_T *cctx)
{
char_u *pskip;
char_u *p;
// Assuming the command starts with a variable or function name,
// find what follows.
// Skip over "var.member", "var[idx]" and the like.
// Also "&opt = val", "$ENV = val" and "@r = val".
pskip = (*eap->cmd == '&' || *eap->cmd == '$' || *eap->cmd == '@')
? eap->cmd + 1 : eap->cmd;
p = to_name_end(pskip, TRUE);
if (p > eap->cmd && *p != NUL)
{
char_u *var_end;
int oplen;
int heredoc;
if (eap->cmd[0] == '@')
var_end = eap->cmd + 2;
else
var_end = find_name_end(pskip, NULL, NULL,
FNE_CHECK_START | FNE_INCL_BR);
oplen = assignment_len(skipwhite(var_end), &heredoc);
if (oplen > 0)
{
size_t len = p - eap->cmd;
// Recognize an assignment if we recognize the variable
// name:
// "&opt = expr"
// "$ENV = expr"
// "@r = expr"
// "g:var = expr"
// "g:[key] = expr"
// "local = expr" where "local" is a local var.
// "script = expr" where "script" is a script-local var.
// "import = expr" where "import" is an imported var
if (*eap->cmd == '&'
|| *eap->cmd == '$'
|| *eap->cmd == '@'
|| ((len) > 2 && eap->cmd[1] == ':')
|| STRNCMP(eap->cmd, "g:[", 3) == 0
|| variable_exists(eap->cmd, len, cctx))
{
*line = compile_assignment(eap->cmd, eap, CMD_SIZE, cctx);
if (*line == NULL || *line == eap->cmd)
return FAIL;
return OK;
}
}
}
// might be "[var, var] = expr" or "ifargisset this.member = expr"
if (*eap->cmd == '[' || STRNCMP(eap->cmd, "ifargisset ", 11) == 0)
{
*line = compile_assignment(eap->cmd, eap, CMD_SIZE, cctx);
if (*line == NULL)
return FAIL;
if (*line != eap->cmd)
return OK;
}
return NOTDONE;
}
/*
* Check if arguments of "ufunc" shadow variables in "cctx".
* Return OK or FAIL.
*/
static int
check_args_shadowing(ufunc_T *ufunc, cctx_T *cctx)
{
int i;
char_u *arg;
int r = OK;
// Make sure arguments are not found when compiling a second time.
ufunc->uf_args_visible = 0;
// Check for arguments shadowing variables from the context.
for (i = 0; i < ufunc->uf_args.ga_len; ++i)
{
arg = ((char_u **)(ufunc->uf_args.ga_data))[i];
if (check_defined(arg, STRLEN(arg), cctx, NULL, TRUE) == FAIL)
{
r = FAIL;
break;
}
}
ufunc->uf_args_visible = ufunc->uf_args.ga_len;
return r;
}
#ifdef HAS_MESSAGE_WINDOW
/*
* Get a count before a command. Can only be a number.
* Returns zero if there is no count.
* Returns -1 if there is something wrong.
*/
static long
get_cmd_count(char_u *line, exarg_T *eap)
{
char_u *p;
// skip over colons and white space
for (p = line; *p == ':' || VIM_ISWHITE(*p); ++p)
;
if (!SAFE_isdigit(*p))
{
// The command or modifiers must be following. Assume a lower case
// character means there is a modifier.
if (p < eap->cmd && !vim_islower(*p))
{
emsg(_(e_invalid_range));
return -1;
}
return 0;
}
return atol((char *)p);
}
#endif
/*
* Get the compilation type that should be used for "ufunc".
* Keep in sync with INSTRUCTIONS().
*/
compiletype_T
get_compile_type(ufunc_T *ufunc)
{
// Update uf_has_breakpoint if needed.
update_has_breakpoint(ufunc);
if (debug_break_level > 0 || may_break_in_function(ufunc))
return CT_DEBUG;
#ifdef FEAT_PROFILE
if (do_profiling == PROF_YES)
{
if (!ufunc->uf_profiling && has_profiling(FALSE, ufunc->uf_name, NULL,
&ufunc->uf_hash))
func_do_profile(ufunc);
if (ufunc->uf_profiling)
return CT_PROFILE;
}
#endif
return CT_NONE;
}
/*
* Free the compiled instructions saved for a def function. This is used when
* compiling a def function and the function was compiled before.
* The index is reused.
*/
static void
clear_def_function(ufunc_T *ufunc, compiletype_T compile_type)
{
isn_T *instr_dest = NULL;
dfunc_T *dfunc;
dfunc = ((dfunc_T *)def_functions.ga_data) + ufunc->uf_dfunc_idx;
switch (compile_type)
{
case CT_PROFILE:
#ifdef FEAT_PROFILE
instr_dest = dfunc->df_instr_prof; break;
#endif
case CT_NONE: instr_dest = dfunc->df_instr; break;
case CT_DEBUG: instr_dest = dfunc->df_instr_debug; break;
}
if (instr_dest != NULL)
// Was compiled in this mode before: Free old instructions.
delete_def_function_contents(dfunc, FALSE);
ga_clear_strings(&dfunc->df_var_names);
dfunc->df_defer_var_idx = 0;
}
/*
* Add a function to the list of :def functions.
* This sets "ufunc->uf_dfunc_idx" but the function isn't compiled yet.
*/
static int
add_def_function(ufunc_T *ufunc)
{
dfunc_T *dfunc;
if (def_functions.ga_len == 0)
{
// The first position is not used, so that a zero uf_dfunc_idx means it
// wasn't set.
if (GA_GROW_FAILS(&def_functions, 1))
return FAIL;
++def_functions.ga_len;
}
// Add the function to "def_functions".
if (GA_GROW_FAILS(&def_functions, 1))
return FAIL;
dfunc = ((dfunc_T *)def_functions.ga_data) + def_functions.ga_len;
CLEAR_POINTER(dfunc);
dfunc->df_idx = def_functions.ga_len;
ufunc->uf_dfunc_idx = dfunc->df_idx;
dfunc->df_ufunc = ufunc;
dfunc->df_name = vim_strnsave(ufunc->uf_name, ufunc->uf_namelen);
ga_init2(&dfunc->df_var_names, sizeof(char_u *), 10);
++dfunc->df_refcount;
++def_functions.ga_len;
return OK;
}
static int
compile_dfunc_ufunc_init(
ufunc_T *ufunc,
cctx_T *outer_cctx,
compiletype_T compile_type,
int *new_def_function)
{
// When using a function that was compiled before: Free old instructions.
// The index is reused. Otherwise add a new entry in "def_functions".
if (ufunc->uf_dfunc_idx > 0)
clear_def_function(ufunc, compile_type);
else
{
if (add_def_function(ufunc) == FAIL)
return FAIL;
*new_def_function = TRUE;
}
if ((ufunc->uf_flags & FC_CLOSURE) && outer_cctx == NULL)
{
semsg(_(e_compiling_closure_without_context_str),
printable_func_name(ufunc));
return FAIL;
}
ufunc->uf_def_status = UF_COMPILING;
return OK;
}
/*
* Initialize the compilation context for compiling a def function.
*/
static void
compile_dfunc_cctx_init(
cctx_T *cctx,
cctx_T *outer_cctx,
ufunc_T *ufunc,
compiletype_T compile_type)
{
CLEAR_FIELD(*cctx);
cctx->ctx_compile_type = compile_type;
cctx->ctx_ufunc = ufunc;
cctx->ctx_lnum = -1;
cctx->ctx_outer = outer_cctx;
ga_init2(&cctx->ctx_locals, sizeof(lvar_T), 10);
// Each entry on the type stack consists of two type pointers.
ga_init2(&cctx->ctx_type_stack, sizeof(type2_T), 50);
cctx->ctx_type_list = &ufunc->uf_type_list;
ga_init2(&cctx->ctx_instr, sizeof(isn_T), 50);
}
/*
* For an object constructor, generate instruction to setup "this" (the first
* local variable) and to initialize the object variables.
*/
static int
obj_constructor_prologue(ufunc_T *ufunc, cctx_T *cctx)
{
generate_CONSTRUCT(cctx, ufunc->uf_class);
for (int i = 0; i < ufunc->uf_class->class_obj_member_count; ++i)
{
ocmember_T *m = &ufunc->uf_class->class_obj_members[i];
if (i < 2 && IS_ENUM(ufunc->uf_class))
// The first two object variables in an enum are the name
// and the ordinal. These are set by the ISN_CONSTRUCT
// instruction. So don't generate instructions to set
// these variables.
continue;
if (m->ocm_init != NULL)
{
char_u *expr = m->ocm_init;
sctx_T save_current_sctx;
int change_sctx = FALSE;
// If the member variable initialization script context is
// different from the current script context, then change it.
if (current_sctx.sc_sid != m->ocm_init_sctx.sc_sid)
change_sctx = TRUE;
if (change_sctx)
{
// generate an instruction to change the script context to the
// member variable initialization script context.
save_current_sctx = current_sctx;
current_sctx = m->ocm_init_sctx;
generate_SCRIPTCTX_SET(cctx, current_sctx);
}
int r = compile_expr0(&expr, cctx);
if (change_sctx)
{
// restore the previous script context
current_sctx = save_current_sctx;
generate_SCRIPTCTX_SET(cctx, current_sctx);
}
if (r == FAIL)
return FAIL;
if (!ends_excmd2(m->ocm_init, expr))
{
semsg(_(e_trailing_characters_str), expr);
return FAIL;
}
type_T *type = get_type_on_stack(cctx, 0);
if (m->ocm_type->tt_type == VAR_ANY
&& !(m->ocm_flags & OCMFLAG_HAS_TYPE)
&& type->tt_type != VAR_SPECIAL)
{
// If the member variable type is not yet set, then use
// the initialization expression type.
m->ocm_type = type;
}
else
{
// The type of the member initialization expression is
// determined at run time. Add a runtime type check.
where_T where = WHERE_INIT;
where.wt_kind = WT_MEMBER;
where.wt_func_name = (char *)m->ocm_name;
if (need_type_where(type, m->ocm_type, FALSE, -1,
where, cctx, FALSE, FALSE) == FAIL)
return FAIL;
}
}
else
push_default_value(cctx, m->ocm_type->tt_type, FALSE, NULL);
if ((m->ocm_type->tt_type == VAR_DICT
|| m->ocm_type->tt_type == VAR_LIST)
&& m->ocm_type->tt_member != NULL
&& m->ocm_type->tt_member != &t_any
&& m->ocm_type->tt_member != &t_unknown)
// Set the type in the list or dict, so that it can be checked,
// also in legacy script.
generate_SETTYPE(cctx, m->ocm_type);
generate_STORE_THIS(cctx, i);
}
return OK;
}
/*
* For an object method and an constructor, generate instruction to setup
* "this" (the first local variable). For a constructor, generate instructions
* to initialize the object variables.
*/
static int
obj_method_prologue(ufunc_T *ufunc, cctx_T *cctx)
{
dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data) + ufunc->uf_dfunc_idx;
if (GA_GROW_FAILS(&dfunc->df_var_names, 1))
return FAIL;
((char_u **)dfunc->df_var_names.ga_data)[0] =
vim_strsave((char_u *)"this");
++dfunc->df_var_names.ga_len;
// In the constructor allocate memory for the object and initialize the
// object members.
if (IS_CONSTRUCTOR_METHOD(ufunc))
return obj_constructor_prologue(ufunc, cctx);
return OK;
}
/*
* Produce instructions for the default values of optional arguments.
*/
static int
compile_def_function_default_args(
ufunc_T *ufunc,
garray_T *instr,
cctx_T *cctx)
{
int count = ufunc->uf_def_args.ga_len;
int first_def_arg = ufunc->uf_args.ga_len - count;
int i;
int off = STACK_FRAME_SIZE + (ufunc->uf_va_name != NULL ? 1 : 0);
int did_set_arg_type = FALSE;
// Produce instructions for the default values of optional arguments.
SOURCING_LNUM = 0; // line number unknown
for (i = 0; i < count; ++i)
{
char_u *arg = ((char_u **)(ufunc->uf_def_args.ga_data))[i];
if (STRCMP(arg, "v:none") == 0)
// "arg = v:none" means the argument is optional without
// setting a value when the argument is missing.
continue;
type_T *val_type;
int arg_idx = first_def_arg + i;
where_T where = WHERE_INIT;
int jump_instr_idx = instr->ga_len;
isn_T *isn;
// Use a JUMP_IF_ARG_SET instruction to skip if the value was given.
if (generate_JUMP_IF_ARG(cctx, ISN_JUMP_IF_ARG_SET,
i - count - off) == FAIL)
return FAIL;
// Make sure later arguments are not found.
ufunc->uf_args_visible = arg_idx;
int r = compile_expr0(&arg, cctx);
if (r == FAIL)
return FAIL;
// If no type specified use the type of the default value.
// Otherwise check that the default value type matches the
// specified type.
val_type = get_type_on_stack(cctx, 0);
where.wt_index = arg_idx + 1;
where.wt_kind = WT_ARGUMENT;
if (ufunc->uf_arg_types[arg_idx] == &t_unknown)
{
did_set_arg_type = TRUE;
ufunc->uf_arg_types[arg_idx] = val_type;
}
else if (need_type_where(val_type, ufunc->uf_arg_types[arg_idx],
FALSE, -1, where, cctx, FALSE, FALSE) == FAIL)
return FAIL;
if (generate_STORE(cctx, ISN_STORE, i - count - off, NULL) == FAIL)
return FAIL;
// set instruction index in JUMP_IF_ARG_SET to here
isn = ((isn_T *)instr->ga_data) + jump_instr_idx;
isn->isn_arg.jumparg.jump_where = instr->ga_len;
}
if (did_set_arg_type)
set_function_type(ufunc);
return OK;
}
/*
* Compile def function body. Loop over all the lines in the function and
* generate instructions.
*/
static int
compile_def_function_body(
int last_func_lnum,
int check_return_type,
garray_T *lines_to_free,
char **errormsg,
cctx_T *cctx)
{
char_u *line = NULL;
char_u *p;
int did_emsg_before = did_emsg;
#ifdef FEAT_PROFILE
int prof_lnum = -1;
#endif
int debug_lnum = -1;
for (;;)
{
exarg_T ea;
int starts_with_colon = FALSE;
char_u *cmd;
cmdmod_T local_cmdmod;
// Bail out on the first error to avoid a flood of errors and report
// the right line number when inside try/catch.
if (did_emsg_before != did_emsg)
return FAIL;
if (line != NULL && *line == '|')
// the line continues after a '|'
++line;
else if (line != NULL && *skipwhite(line) != NUL
&& !(*line == '#' && (line == cctx->ctx_line_start
|| VIM_ISWHITE(line[-1]))))
{
semsg(_(e_trailing_characters_str), line);
return FAIL;
}
else if (line != NULL && vim9_bad_comment(skipwhite(line)))
return FAIL;
else
{
line = next_line_from_context(cctx, FALSE);
if (cctx->ctx_lnum >= last_func_lnum)
{
// beyond the last line
#ifdef FEAT_PROFILE
if (cctx->ctx_skip != SKIP_YES)
may_generate_prof_end(cctx, prof_lnum);
#endif
break;
}
// Make a copy, splitting off nextcmd and removing trailing spaces
// may change it.
if (line != NULL)
{
line = vim_strsave(line);
if (ga_add_string(lines_to_free, line) == FAIL)
return FAIL;
}
}
CLEAR_FIELD(ea);
ea.cmdlinep = &line;
ea.cmd = skipwhite(line);
ea.skip = cctx->ctx_skip == SKIP_YES;
if (*ea.cmd == '#')
{
// "#" starts a comment, but "#{" is an error
if (vim9_bad_comment(ea.cmd))
return FAIL;
line = (char_u *)"";
continue;
}
#ifdef FEAT_PROFILE
if (cctx->ctx_compile_type == CT_PROFILE && cctx->ctx_lnum != prof_lnum
&& cctx->ctx_skip != SKIP_YES)
{
may_generate_prof_end(cctx, prof_lnum);
prof_lnum = cctx->ctx_lnum;
generate_instr(cctx, ISN_PROF_START);
}
#endif
if (cctx->ctx_compile_type == CT_DEBUG && cctx->ctx_lnum != debug_lnum
&& cctx->ctx_skip != SKIP_YES)
{
debug_lnum = cctx->ctx_lnum;
generate_instr_debug(cctx);
}
cctx->ctx_prev_lnum = cctx->ctx_lnum + 1;
// Some things can be recognized by the first character.
switch (*ea.cmd)
{
case '}':
{
// "}" ends a block scope
scopetype_T stype = cctx->ctx_scope == NULL
? NO_SCOPE : cctx->ctx_scope->se_type;
if (stype == BLOCK_SCOPE)
{
compile_endblock(cctx);
line = ea.cmd;
}
else
{
emsg(_(e_using_rcurly_outside_if_block_scope));
return FAIL;
}
if (line != NULL)
line = skipwhite(ea.cmd + 1);
continue;
}
case '{':
// "{" starts a block scope
// "{'a': 1}->func() is something else
if (ends_excmd(*skipwhite(ea.cmd + 1)))
{
line = compile_block(ea.cmd, cctx);
continue;
}
break;
}
/*
* COMMAND MODIFIERS
*/
cctx->ctx_has_cmdmod = FALSE;
if (parse_command_modifiers(&ea, errormsg, &local_cmdmod, FALSE)
== FAIL)
return FAIL;
generate_cmdmods(cctx, &local_cmdmod);
undo_cmdmod(&local_cmdmod);
// Check if there was a colon after the last command modifier or before
// the current position.
for (p = ea.cmd; p >= line; --p)
{
if (*p == ':')
starts_with_colon = TRUE;
if (p < ea.cmd && !VIM_ISWHITE(*p))
break;
}
// Skip ":call" to get to the function name, unless using :legacy
p = ea.cmd;
if (!(local_cmdmod.cmod_flags & CMOD_LEGACY))
{
if (checkforcmd(&ea.cmd, "call", 3))
{
if (*ea.cmd == '(')
// not for "call()"
ea.cmd = p;
else
ea.cmd = skipwhite(ea.cmd);
}
if (!starts_with_colon)
{
int assign;
// Check for assignment after command modifiers.
assign = may_compile_assignment(&ea, &line, cctx);
if (assign == OK)
goto nextline;
if (assign == FAIL)
return FAIL;
}
}
/*
* COMMAND after range
* 'text'->func() should not be confused with 'a mark
* 0z1234->func() should not be confused with a zero line number
* "++nr" and "--nr" are eval commands
* in "$ENV->func()" the "$" is not a range
* "123->func()" is a method call
*/
cmd = ea.cmd;
if ((*cmd != '$' || starts_with_colon)
&& (starts_with_colon
|| !(*cmd == '\''
|| (cmd[0] == '0' && cmd[1] == 'z')
|| (cmd[0] != NUL && cmd[0] == cmd[1]
&& (*cmd == '+' || *cmd == '-'))
|| number_method(cmd))))
{
ea.cmd = skip_range(ea.cmd, TRUE, NULL);
if (ea.cmd > cmd)
{
if (!starts_with_colon
&& !(local_cmdmod.cmod_flags & CMOD_LEGACY))
{
semsg(_(e_colon_required_before_range_str), cmd);
return FAIL;
}
ea.addr_count = 1;
if (ends_excmd2(line, ea.cmd))
{
// A range without a command: jump to the line.
generate_EXEC(cctx, ISN_EXECRANGE,
vim_strnsave(cmd, ea.cmd - cmd));
line = ea.cmd;
goto nextline;
}
}
}
p = find_ex_command(&ea, NULL,
starts_with_colon || (local_cmdmod.cmod_flags & CMOD_LEGACY)
? NULL : item_exists, cctx);
if (p == NULL)
{
if (cctx->ctx_skip != SKIP_YES)
semsg(_(e_ambiguous_use_of_user_defined_command_str), ea.cmd);
return FAIL;
}
// When using ":legacy cmd" always use compile_exec().
if (local_cmdmod.cmod_flags & CMOD_LEGACY)
{
char_u *start = ea.cmd;
switch (ea.cmdidx)
{
case CMD_if:
case CMD_elseif:
case CMD_else:
case CMD_endif:
case CMD_for:
case CMD_endfor:
case CMD_continue:
case CMD_break:
case CMD_while:
case CMD_endwhile:
case CMD_try:
case CMD_catch:
case CMD_finally:
case CMD_endtry:
semsg(_(e_cannot_use_legacy_with_command_str), ea.cmd);
return FAIL;
default: break;
}
// ":legacy return expr" needs to be handled differently.
if (checkforcmd(&start, "return", 4))
ea.cmdidx = CMD_return;
else
ea.cmdidx = CMD_legacy;
}
if (p == ea.cmd && ea.cmdidx != CMD_SIZE)
{
// "eval" is used for "val->func()" and "var" for "var = val", then
// "p" is equal to "ea.cmd" for a valid command.
if (ea.cmdidx == CMD_eval || ea.cmdidx == CMD_var)
;
else if (cctx->ctx_skip == SKIP_YES)
{
line += STRLEN(line);
goto nextline;
}
else
{
semsg(_(e_command_not_recognized_str), ea.cmd);
return FAIL;
}
}
if ((cctx->ctx_had_return || cctx->ctx_had_throw)
&& ea.cmdidx != CMD_elseif
&& ea.cmdidx != CMD_else
&& ea.cmdidx != CMD_endif
&& ea.cmdidx != CMD_endfor
&& ea.cmdidx != CMD_endwhile
&& ea.cmdidx != CMD_catch
&& ea.cmdidx != CMD_finally
&& ea.cmdidx != CMD_endtry
&& !ignore_unreachable_code_for_testing)
{
semsg(_(e_unreachable_code_after_str),
cctx->ctx_had_return ? "return" : "throw");
return FAIL;
}
// When processing the end of an if-else block, don't clear the
// "ctx_had_throw" flag. If an if-else block ends in a "throw"
// statement, then it is considered to end in a "return" statement.
// The "ctx_had_throw" is cleared immediately after processing the
// if-else block ending statement.
// Otherwise, clear the "had_throw" flag.
if (ea.cmdidx != CMD_else && ea.cmdidx != CMD_elseif
&& ea.cmdidx != CMD_endif)
cctx->ctx_had_throw = FALSE;
p = skipwhite(p);
if (ea.cmdidx != CMD_SIZE
&& ea.cmdidx != CMD_write && ea.cmdidx != CMD_read)
{
if (ea.cmdidx >= 0)
ea.argt = excmd_get_argt(ea.cmdidx);
if ((ea.argt & EX_BANG) && *p == '!')
{
ea.forceit = TRUE;
p = skipwhite(p + 1);
}
if ((ea.argt & EX_RANGE) == 0 && ea.addr_count > 0)
{
emsg(_(e_no_range_allowed));
return FAIL;
}
}
switch (ea.cmdidx)
{
case CMD_def:
case CMD_function:
ea.arg = p;
line = compile_nested_function(&ea, cctx, lines_to_free);
break;
case CMD_return:
line = compile_return(p, check_return_type,
local_cmdmod.cmod_flags & CMOD_LEGACY, cctx);
cctx->ctx_had_return = TRUE;
break;
case CMD_let:
emsg(_(e_cannot_use_let_in_vim9_script));
break;
case CMD_var:
case CMD_final:
case CMD_const:
case CMD_increment:
case CMD_decrement:
line = compile_assignment(p, &ea, ea.cmdidx, cctx);
if (line == p)
{
emsg(_(e_invalid_assignment));
line = NULL;
}
break;
case CMD_unlet:
case CMD_unlockvar:
case CMD_lockvar:
line = compile_unletlock(p, &ea, cctx);
break;
case CMD_import:
emsg(_(e_import_can_only_be_used_in_script));
line = NULL;
break;
case CMD_if:
line = compile_if(p, cctx);
break;
case CMD_elseif:
line = compile_elseif(p, cctx);
cctx->ctx_had_return = FALSE;
cctx->ctx_had_throw = FALSE;
break;
case CMD_else:
line = compile_else(p, cctx);
cctx->ctx_had_return = FALSE;
cctx->ctx_had_throw = FALSE;
break;
case CMD_endif:
line = compile_endif(p, cctx);
cctx->ctx_had_throw = FALSE;
break;
case CMD_while:
line = compile_while(p, cctx);
break;
case CMD_endwhile:
line = compile_endwhile(p, cctx);
cctx->ctx_had_return = FALSE;
break;
case CMD_for:
line = compile_for(p, cctx);
break;
case CMD_endfor:
line = compile_endfor(p, cctx);
cctx->ctx_had_return = FALSE;
break;
case CMD_continue:
line = compile_continue(p, cctx);
break;
case CMD_break:
line = compile_break(p, cctx);
break;
case CMD_try:
line = compile_try(p, cctx);
break;
case CMD_catch:
line = compile_catch(p, cctx);
cctx->ctx_had_return = FALSE;
break;
case CMD_finally:
line = compile_finally(p, cctx);
cctx->ctx_had_return = FALSE;
break;
case CMD_endtry:
line = compile_endtry(p, cctx);
break;
case CMD_throw:
line = compile_throw(p, cctx);
cctx->ctx_had_throw = TRUE;
break;
case CMD_eval:
line = compile_eval(p, cctx);
break;
case CMD_defer:
line = compile_defer(p, cctx);
break;
#ifdef HAS_MESSAGE_WINDOW
case CMD_echowindow:
{
long cmd_count = get_cmd_count(line, &ea);
if (cmd_count < 0)
line = NULL;
else
line = compile_mult_expr(p, ea.cmdidx,
cmd_count, cctx);
}
break;
#endif
case CMD_echo:
case CMD_echon:
case CMD_echoconsole:
case CMD_echoerr:
case CMD_echomsg:
case CMD_execute:
line = compile_mult_expr(p, ea.cmdidx, 0, cctx);
break;
case CMD_put:
ea.cmd = cmd;
line = compile_put(p, &ea, cctx);
break;
case CMD_substitute:
if (check_global_and_subst(ea.cmd, p) == FAIL)
return FAIL;
if (cctx->ctx_skip == SKIP_YES)
line = (char_u *)"";
else
{
ea.arg = p;
line = compile_substitute(line, &ea, cctx);
}
break;
case CMD_redir:
ea.arg = p;
line = compile_redir(line, &ea, cctx);
break;
case CMD_cexpr:
case CMD_lexpr:
case CMD_caddexpr:
case CMD_laddexpr:
case CMD_cgetexpr:
case CMD_lgetexpr:
#ifdef FEAT_QUICKFIX
ea.arg = p;
line = compile_cexpr(line, &ea, cctx);
#else
ex_ni(&ea);
line = NULL;
#endif
break;
case CMD_append:
case CMD_change:
case CMD_insert:
case CMD_k:
case CMD_t:
case CMD_xit:
not_in_vim9(&ea);
return FAIL;
case CMD_SIZE:
if (cctx->ctx_skip != SKIP_YES)
{
semsg(_(e_invalid_command_str), ea.cmd);
return FAIL;
}
// We don't check for a next command here.
line = (char_u *)"";
break;
case CMD_lua:
case CMD_mzscheme:
case CMD_perl:
case CMD_py3:
case CMD_python3:
case CMD_python:
case CMD_pythonx:
case CMD_ruby:
case CMD_tcl:
ea.arg = p;
if (vim_strchr(line, '\n') == NULL)
line = compile_exec(line, &ea, cctx);
else
// heredoc lines have been concatenated with NL
// characters in get_function_body()
line = compile_script(line, cctx);
break;
case CMD_vim9script:
if (cctx->ctx_skip != SKIP_YES)
{
emsg(_(e_vim9script_can_only_be_used_in_script));
return FAIL;
}
line = (char_u *)"";
break;
case CMD_class:
emsg(_(e_class_can_only_be_used_in_script));
return FAIL;
case CMD_type:
emsg(_(e_type_can_only_be_used_in_script));
return FAIL;
case CMD_global:
if (check_global_and_subst(ea.cmd, p) == FAIL)
return FAIL;
// FALLTHROUGH
default:
// Not recognized, execute with do_cmdline_cmd().
ea.arg = p;
line = compile_exec(line, &ea, cctx);
break;
}
nextline:
if (line == NULL)
return FAIL;
line = skipwhite(line);
// Undo any command modifiers.
generate_undo_cmdmods(cctx);
if (cctx->ctx_type_stack.ga_len < 0)
{
iemsg("Type stack underflow");
return FAIL;
}
} // END of the loop over all the function body lines.
return OK;
}
/*
* Returns TRUE if the end of a scope (if, while, for, block) is missing.
* Called after compiling a def function body.
*/
static int
compile_dfunc_scope_end_missing(cctx_T *cctx)
{
if (cctx->ctx_scope == NULL)
return FALSE;
if (cctx->ctx_scope->se_type == IF_SCOPE)
emsg(_(e_missing_endif));
else if (cctx->ctx_scope->se_type == WHILE_SCOPE)
emsg(_(e_missing_endwhile));
else if (cctx->ctx_scope->se_type == FOR_SCOPE)
emsg(_(e_missing_endfor));
else
emsg(_(e_missing_rcurly));
return TRUE;
}
/*
* When compiling a def function, if it doesn't have an explicit return
* statement, then generate a default return instruction. For an object
* constructor, return the object.
*/
static int
compile_dfunc_generate_default_return(ufunc_T *ufunc, cctx_T *cctx)
{
// TODO: if a function ends in "throw" but there was a return elsewhere we
// should not assume the return type is "void".
if (cctx->ctx_had_return || cctx->ctx_had_throw)
return OK;
if (ufunc->uf_ret_type->tt_type == VAR_UNKNOWN)
ufunc->uf_ret_type = &t_void;
else if (ufunc->uf_ret_type->tt_type != VAR_VOID
&& !IS_CONSTRUCTOR_METHOD(ufunc))
{
emsg(_(e_missing_return_statement));
return FAIL;
}
// Return void if there is no return at the end.
// For a constructor return the object.
if (IS_CONSTRUCTOR_METHOD(ufunc))
{
generate_instr(cctx, ISN_RETURN_OBJECT);
ufunc->uf_ret_type = &ufunc->uf_class->class_object_type;
}
else
generate_instr(cctx, ISN_RETURN_VOID);
return OK;
}
/*
* Perform the chores after successfully compiling a def function.
*/
static void
compile_dfunc_epilogue(
cctx_T *outer_cctx,
ufunc_T *ufunc,
garray_T *instr,
cctx_T *cctx)
{
dfunc_T *dfunc;
dfunc = ((dfunc_T *)def_functions.ga_data) + ufunc->uf_dfunc_idx;
dfunc->df_deleted = FALSE;
dfunc->df_script_seq = current_sctx.sc_seq;
#ifdef FEAT_PROFILE
if (cctx->ctx_compile_type == CT_PROFILE)
{
dfunc->df_instr_prof = instr->ga_data;
dfunc->df_instr_prof_count = instr->ga_len;
}
else
#endif
if (cctx->ctx_compile_type == CT_DEBUG)
{
dfunc->df_instr_debug = instr->ga_data;
dfunc->df_instr_debug_count = instr->ga_len;
}
else
{
dfunc->df_instr = instr->ga_data;
dfunc->df_instr_count = instr->ga_len;
}
dfunc->df_varcount = dfunc->df_var_names.ga_len;
dfunc->df_has_closure = cctx->ctx_has_closure;
if (cctx->ctx_outer_used)
{
ufunc->uf_flags |= FC_CLOSURE;
if (outer_cctx != NULL)
++outer_cctx->ctx_closure_count;
}
ufunc->uf_def_status = UF_COMPILED;
}
/*
* Perform the cleanup when a def function compilation fails.
*/
static void
compile_dfunc_ufunc_cleanup(
ufunc_T *ufunc,
garray_T *instr,
int new_def_function,
char *errormsg,
int did_emsg_before,
cctx_T *cctx)
{
dfunc_T *dfunc;
dfunc = ((dfunc_T *)def_functions.ga_data) + ufunc->uf_dfunc_idx;
// Compiling aborted, free the generated instructions.
clear_instr_ga(instr);
VIM_CLEAR(dfunc->df_name);
ga_clear_strings(&dfunc->df_var_names);
// If using the last entry in the table and it was added above, we
// might as well remove it.
if (!dfunc->df_deleted && new_def_function
&& ufunc->uf_dfunc_idx == def_functions.ga_len - 1)
{
--def_functions.ga_len;
ufunc->uf_dfunc_idx = 0;
}
ufunc->uf_def_status = UF_COMPILE_ERROR;
while (cctx->ctx_scope != NULL)
drop_scope(cctx);
if (errormsg != NULL)
emsg(errormsg);
else if (did_emsg == did_emsg_before)
emsg(_(e_compiling_def_function_failed));
}
/*
* After ex_function() has collected all the function lines: parse and compile
* the lines into instructions.
* Adds the function to "def_functions".
* When "check_return_type" is set then set ufunc->uf_ret_type to the type of
* the return statement (used for lambda). When uf_ret_type is already set
* then check that it matches.
* When "profiling" is true add ISN_PROF_START instructions.
* "outer_cctx" is set for a nested function.
* This can be used recursively through compile_lambda(), which may reallocate
* "def_functions".
* Returns OK or FAIL.
*/
int
compile_def_function(
ufunc_T *ufunc,
int check_return_type,
compiletype_T compile_type,
cctx_T *outer_cctx)
{
garray_T lines_to_free;
char *errormsg = NULL; // error message
cctx_T cctx;
garray_T *instr;
int did_emsg_before = did_emsg;
int did_emsg_silent_before = did_emsg_silent;
int ret = FAIL;
sctx_T save_current_sctx = current_sctx;
int save_estack_compiling = estack_compiling;
int save_cmod_flags = cmdmod.cmod_flags;
int do_estack_push;
int new_def_function = FALSE;
// allocated lines are freed at the end
ga_init2(&lines_to_free, sizeof(char_u *), 50);
// Initialize the ufunc and the compilation context
if (compile_dfunc_ufunc_init(ufunc, outer_cctx, compile_type,
&new_def_function) == FAIL)
return FAIL;
compile_dfunc_cctx_init(&cctx, outer_cctx, ufunc, compile_type);
instr = &cctx.ctx_instr;
// Set the context to the function, it may be compiled when called from
// another script. Set the script version to the most modern one.
// The line number will be set in next_line_from_context().
current_sctx = ufunc->uf_script_ctx;
current_sctx.sc_version = SCRIPT_VERSION_VIM9;
// Don't use the flag from ":legacy" here.
cmdmod.cmod_flags &= ~CMOD_LEGACY;
// Make sure error messages are OK.
do_estack_push = !estack_top_is_ufunc(ufunc, 1);
if (do_estack_push)
estack_push_ufunc(ufunc, 1);
estack_compiling = TRUE;
// Make sure arguments don't shadow variables in the context
if (check_args_shadowing(ufunc, &cctx) == FAIL)
goto erret;
// For an object method and a constructor generate instructions to
// initialize "this" and the object variables.
if (ufunc->uf_flags & (FC_OBJECT|FC_NEW))
if (obj_method_prologue(ufunc, &cctx) == FAIL)
goto erret;
if (ufunc->uf_def_args.ga_len > 0)
if (compile_def_function_default_args(ufunc, instr, &cctx) == FAIL)
goto erret;
ufunc->uf_args_visible = ufunc->uf_args.ga_len;
// Compiling an abstract method or a function in an interface is done to
// get the function type. No code is actually compiled.
if (ufunc->uf_class != NULL && (IS_INTERFACE(ufunc->uf_class)
|| IS_ABSTRACT_METHOD(ufunc)))
{
ufunc->uf_def_status = UF_NOT_COMPILED;
ret = OK;
goto erret;
}
// compile the function body
if (compile_def_function_body(ufunc->uf_lines.ga_len, check_return_type,
&lines_to_free, &errormsg, &cctx) == FAIL)
goto erret;
if (compile_dfunc_scope_end_missing(&cctx))
goto erret;
if (compile_dfunc_generate_default_return(ufunc, &cctx) == FAIL)
goto erret;
// When compiled with ":silent!" and there was an error don't consider the
// function compiled.
if (emsg_silent == 0 || did_emsg_silent == did_emsg_silent_before)
compile_dfunc_epilogue(outer_cctx, ufunc, instr, &cctx);
ret = OK;
erret:
if (ufunc->uf_def_status == UF_COMPILING)
{
// compilation failed. do cleanup.
compile_dfunc_ufunc_cleanup(ufunc, instr, new_def_function,
errormsg, did_emsg_before, &cctx);
}
if (cctx.ctx_redir_lhs.lhs_name != NULL)
{
if (ret == OK)
{
emsg(_(e_missing_redir_end));
ret = FAIL;
}
vim_free(cctx.ctx_redir_lhs.lhs_name);
vim_free(cctx.ctx_redir_lhs.lhs_whole);
}
current_sctx = save_current_sctx;
estack_compiling = save_estack_compiling;
cmdmod.cmod_flags = save_cmod_flags;
if (do_estack_push)
estack_pop();
ga_clear_strings(&lines_to_free);
free_locals(&cctx);
ga_clear(&cctx.ctx_type_stack);
return ret;
}
void
set_function_type(ufunc_T *ufunc)
{
int varargs = ufunc->uf_va_name != NULL;
int argcount = ufunc->uf_args.ga_len;
// Create a type for the function, with the return type and any
// argument types.
// A vararg is included in uf_args.ga_len but not in uf_arg_types.
// The type is included in "tt_args".
if (argcount > 0 || varargs)
{
if (ufunc->uf_type_list.ga_itemsize == 0)
ga_init2(&ufunc->uf_type_list, sizeof(type_T *), 10);
ufunc->uf_func_type = alloc_func_type(ufunc->uf_ret_type,
argcount, &ufunc->uf_type_list);
// Add argument types to the function type.
if (func_type_add_arg_types(ufunc->uf_func_type,
argcount + varargs,
&ufunc->uf_type_list) == FAIL)
return;
ufunc->uf_func_type->tt_argcount = argcount + varargs;
ufunc->uf_func_type->tt_min_argcount =
argcount - ufunc->uf_def_args.ga_len;
if (ufunc->uf_arg_types == NULL)
{
int i;
// lambda does not have argument types.
for (i = 0; i < argcount; ++i)
ufunc->uf_func_type->tt_args[i] = &t_any;
}
else
mch_memmove(ufunc->uf_func_type->tt_args,
ufunc->uf_arg_types, sizeof(type_T *) * argcount);
if (varargs)
{
ufunc->uf_func_type->tt_args[argcount] =
ufunc->uf_va_type == NULL ? &t_list_any : ufunc->uf_va_type;
ufunc->uf_func_type->tt_flags = TTFLAG_VARARGS;
}
}
else
// No arguments, can use a predefined type.
ufunc->uf_func_type = get_func_type(ufunc->uf_ret_type,
argcount, &ufunc->uf_type_list);
}
/*
* Free all instructions for "dfunc" except df_name.
*/
static void
delete_def_function_contents(dfunc_T *dfunc, int mark_deleted)
{
int idx;
// In same cases the instructions may refer to a class in which the
// function is defined and unreferencing the class may call back here
// recursively. Set the df_delete_busy to avoid problems.
if (dfunc->df_delete_busy)
return;
dfunc->df_delete_busy = TRUE;
ga_clear(&dfunc->df_def_args_isn);
ga_clear_strings(&dfunc->df_var_names);
if (dfunc->df_instr != NULL)
{
for (idx = 0; idx < dfunc->df_instr_count; ++idx)
delete_instr(dfunc->df_instr + idx);
VIM_CLEAR(dfunc->df_instr);
}
if (dfunc->df_instr_debug != NULL)
{
for (idx = 0; idx < dfunc->df_instr_debug_count; ++idx)
delete_instr(dfunc->df_instr_debug + idx);
VIM_CLEAR(dfunc->df_instr_debug);
}
#ifdef FEAT_PROFILE
if (dfunc->df_instr_prof != NULL)
{
for (idx = 0; idx < dfunc->df_instr_prof_count; ++idx)
delete_instr(dfunc->df_instr_prof + idx);
VIM_CLEAR(dfunc->df_instr_prof);
}
#endif
if (mark_deleted)
dfunc->df_deleted = TRUE;
if (dfunc->df_ufunc != NULL)
dfunc->df_ufunc->uf_def_status = UF_NOT_COMPILED;
dfunc->df_delete_busy = FALSE;
}
/*
* When a user function is deleted, clear the contents of any associated def
* function, unless another user function still uses it.
* The position in def_functions can be re-used.
*/
void
unlink_def_function(ufunc_T *ufunc)
{
if (ufunc->uf_dfunc_idx <= 0)
return;
dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data)
+ ufunc->uf_dfunc_idx;
if (--dfunc->df_refcount <= 0)
delete_def_function_contents(dfunc, TRUE);
ufunc->uf_def_status = UF_NOT_COMPILED;
ufunc->uf_dfunc_idx = 0;
if (dfunc->df_ufunc == ufunc)
dfunc->df_ufunc = NULL;
}
/*
* Used when a user function refers to an existing dfunc.
*/
void
link_def_function(ufunc_T *ufunc)
{
if (ufunc->uf_dfunc_idx <= 0)
return;
dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data)
+ ufunc->uf_dfunc_idx;
++dfunc->df_refcount;
}
#if defined(EXITFREE) || defined(PROTO)
/*
* Free all functions defined with ":def".
*/
void
free_def_functions(void)
{
int idx;
for (idx = 0; idx < def_functions.ga_len; ++idx)
{
dfunc_T *dfunc = ((dfunc_T *)def_functions.ga_data) + idx;
delete_def_function_contents(dfunc, TRUE);
vim_free(dfunc->df_name);
}
ga_clear(&def_functions);
}
#endif
#endif // FEAT_EVAL